Pattern analysis for autonomous vehicles with the region- and feature-based neural network: global self-localization and traffic sign recognition
Autonomous vehicles require that all processes be efficient in time, complexity and data storage. In fact, an ideal system employs multifunctional models where ever possible. This paper presents the region- and feature-based neural network (RFNN) as a viable pattern analysis process engine for solvi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3604 vol.4 |
---|---|
container_issue | |
container_start_page | 3598 |
container_title | |
container_volume | 4 |
creator | Janet, J.A. White, M.W. Chase, T.A. Luo, R.C. Sutton, J.C. |
description | Autonomous vehicles require that all processes be efficient in time, complexity and data storage. In fact, an ideal system employs multifunctional models where ever possible. This paper presents the region- and feature-based neural network (RFNN) as a viable pattern analysis process engine for solving a variety of problems with a single math model. The RFNN employs receptive fields and weight sharing which compensate for noise, minor phase shifts and occlusions. The RFNN also utilizes greedy adaptive learning rates and mature feature preservation to expedite the overall training process. A novel ad hoc approach called "shocking" is used to solve the instability problem inherent to greedy adaptive learning rates. The basic RFNN "feature" is grounded in computer vision morphology in that the neural network autonomously learns subpatterns unique to various problems. This paper comprehensively describes the flexible RFNN architecture and training process and presents two problems that can be solved by the RFNN: sensor pattern-recognition and traffic sign recognition. |
doi_str_mv | 10.1109/ROBOT.1996.509261 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_509261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>509261</ieee_id><sourcerecordid>509261</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-dc8b4a2b854ff70437d5c1218bf55564772dedaa10d3f21316a91a0ec0bd7513</originalsourceid><addsrcrecordid>eNotkElOwzAYhS0GibZwAFj5Ai4e4jhhBxWTVKkIdcGu-hPbrcGNke1QlVtwY8Kwenp6-r7FQ-ic0SljtL58XtwsllNW1-VU0pqX7ACNuFSK0Eq9HKIxVRUVvK4qeoRGjEpKCsXrEzRO6ZVSKkRZjtDXE-RsYoehA79PLmEbIoY-hy5sQ5_wh9m41puEdy5vcN4YHM3ahY4MhMbWQO6jIQ0ko3Fn-gh-iLwL8e0Kr31ohp6Mt8SHFrz7hDywv2iOYK1rcXLrbnC2Yd25n_EUHVvwyZz95wQt726XswcyX9w_zq7nxDHFM9Ft1RTAm0oW1ipaCKVlyzirGiulLAuluDYagFEtLGeClVAzoKaljVaSiQm6-NM6Y8zqPbotxP3q70jxDW1_aZo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pattern analysis for autonomous vehicles with the region- and feature-based neural network: global self-localization and traffic sign recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Janet, J.A. ; White, M.W. ; Chase, T.A. ; Luo, R.C. ; Sutton, J.C.</creator><creatorcontrib>Janet, J.A. ; White, M.W. ; Chase, T.A. ; Luo, R.C. ; Sutton, J.C.</creatorcontrib><description>Autonomous vehicles require that all processes be efficient in time, complexity and data storage. In fact, an ideal system employs multifunctional models where ever possible. This paper presents the region- and feature-based neural network (RFNN) as a viable pattern analysis process engine for solving a variety of problems with a single math model. The RFNN employs receptive fields and weight sharing which compensate for noise, minor phase shifts and occlusions. The RFNN also utilizes greedy adaptive learning rates and mature feature preservation to expedite the overall training process. A novel ad hoc approach called "shocking" is used to solve the instability problem inherent to greedy adaptive learning rates. The basic RFNN "feature" is grounded in computer vision morphology in that the neural network autonomously learns subpatterns unique to various problems. This paper comprehensively describes the flexible RFNN architecture and training process and presents two problems that can be solved by the RFNN: sensor pattern-recognition and traffic sign recognition.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 0780329880</identifier><identifier>ISBN: 9780780329881</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.1996.509261</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Computer vision ; Engines ; Memory ; Mobile robots ; Morphology ; Neural networks ; Pattern analysis ; Phase noise ; Remotely operated vehicles</subject><ispartof>Proceedings of IEEE International Conference on Robotics and Automation, 1996, Vol.4, p.3598-3604 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/509261$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/509261$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Janet, J.A.</creatorcontrib><creatorcontrib>White, M.W.</creatorcontrib><creatorcontrib>Chase, T.A.</creatorcontrib><creatorcontrib>Luo, R.C.</creatorcontrib><creatorcontrib>Sutton, J.C.</creatorcontrib><title>Pattern analysis for autonomous vehicles with the region- and feature-based neural network: global self-localization and traffic sign recognition</title><title>Proceedings of IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Autonomous vehicles require that all processes be efficient in time, complexity and data storage. In fact, an ideal system employs multifunctional models where ever possible. This paper presents the region- and feature-based neural network (RFNN) as a viable pattern analysis process engine for solving a variety of problems with a single math model. The RFNN employs receptive fields and weight sharing which compensate for noise, minor phase shifts and occlusions. The RFNN also utilizes greedy adaptive learning rates and mature feature preservation to expedite the overall training process. A novel ad hoc approach called "shocking" is used to solve the instability problem inherent to greedy adaptive learning rates. The basic RFNN "feature" is grounded in computer vision morphology in that the neural network autonomously learns subpatterns unique to various problems. This paper comprehensively describes the flexible RFNN architecture and training process and presents two problems that can be solved by the RFNN: sensor pattern-recognition and traffic sign recognition.</description><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Engines</subject><subject>Memory</subject><subject>Mobile robots</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Pattern analysis</subject><subject>Phase noise</subject><subject>Remotely operated vehicles</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>0780329880</isbn><isbn>9780780329881</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkElOwzAYhS0GibZwAFj5Ai4e4jhhBxWTVKkIdcGu-hPbrcGNke1QlVtwY8Kwenp6-r7FQ-ic0SljtL58XtwsllNW1-VU0pqX7ACNuFSK0Eq9HKIxVRUVvK4qeoRGjEpKCsXrEzRO6ZVSKkRZjtDXE-RsYoehA79PLmEbIoY-hy5sQ5_wh9m41puEdy5vcN4YHM3ahY4MhMbWQO6jIQ0ko3Fn-gh-iLwL8e0Kr31ohp6Mt8SHFrz7hDywv2iOYK1rcXLrbnC2Yd25n_EUHVvwyZz95wQt726XswcyX9w_zq7nxDHFM9Ft1RTAm0oW1ipaCKVlyzirGiulLAuluDYagFEtLGeClVAzoKaljVaSiQm6-NM6Y8zqPbotxP3q70jxDW1_aZo</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Janet, J.A.</creator><creator>White, M.W.</creator><creator>Chase, T.A.</creator><creator>Luo, R.C.</creator><creator>Sutton, J.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Pattern analysis for autonomous vehicles with the region- and feature-based neural network: global self-localization and traffic sign recognition</title><author>Janet, J.A. ; White, M.W. ; Chase, T.A. ; Luo, R.C. ; Sutton, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-dc8b4a2b854ff70437d5c1218bf55564772dedaa10d3f21316a91a0ec0bd7513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Engines</topic><topic>Memory</topic><topic>Mobile robots</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Pattern analysis</topic><topic>Phase noise</topic><topic>Remotely operated vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Janet, J.A.</creatorcontrib><creatorcontrib>White, M.W.</creatorcontrib><creatorcontrib>Chase, T.A.</creatorcontrib><creatorcontrib>Luo, R.C.</creatorcontrib><creatorcontrib>Sutton, J.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Janet, J.A.</au><au>White, M.W.</au><au>Chase, T.A.</au><au>Luo, R.C.</au><au>Sutton, J.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pattern analysis for autonomous vehicles with the region- and feature-based neural network: global self-localization and traffic sign recognition</atitle><btitle>Proceedings of IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>1996</date><risdate>1996</risdate><volume>4</volume><spage>3598</spage><epage>3604 vol.4</epage><pages>3598-3604 vol.4</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>0780329880</isbn><isbn>9780780329881</isbn><abstract>Autonomous vehicles require that all processes be efficient in time, complexity and data storage. In fact, an ideal system employs multifunctional models where ever possible. This paper presents the region- and feature-based neural network (RFNN) as a viable pattern analysis process engine for solving a variety of problems with a single math model. The RFNN employs receptive fields and weight sharing which compensate for noise, minor phase shifts and occlusions. The RFNN also utilizes greedy adaptive learning rates and mature feature preservation to expedite the overall training process. A novel ad hoc approach called "shocking" is used to solve the instability problem inherent to greedy adaptive learning rates. The basic RFNN "feature" is grounded in computer vision morphology in that the neural network autonomously learns subpatterns unique to various problems. This paper comprehensively describes the flexible RFNN architecture and training process and presents two problems that can be solved by the RFNN: sensor pattern-recognition and traffic sign recognition.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.1996.509261</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings of IEEE International Conference on Robotics and Automation, 1996, Vol.4, p.3598-3604 vol.4 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_509261 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer architecture Computer vision Engines Memory Mobile robots Morphology Neural networks Pattern analysis Phase noise Remotely operated vehicles |
title | Pattern analysis for autonomous vehicles with the region- and feature-based neural network: global self-localization and traffic sign recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pattern%20analysis%20for%20autonomous%20vehicles%20with%20the%20region-%20and%20feature-based%20neural%20network:%20global%20self-localization%20and%20traffic%20sign%20recognition&rft.btitle=Proceedings%20of%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Janet,%20J.A.&rft.date=1996&rft.volume=4&rft.spage=3598&rft.epage=3604%20vol.4&rft.pages=3598-3604%20vol.4&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=0780329880&rft.isbn_list=9780780329881&rft_id=info:doi/10.1109/ROBOT.1996.509261&rft_dat=%3Cieee_6IE%3E509261%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=509261&rfr_iscdi=true |