Modeling and Numerical Analysis for Silicon-on-Insulator Rib Waveguide Corners
Silicon-on-insulator (SOI) waveguide designs have shown merit in highly integrated photonic devices and the associated manufacturing technique has achieved an acceptable level of maturity in the microphotonic industry. Thus, the sharp bending of SOI waveguides and/or deflection of light between SOI...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2009-10, Vol.27 (20), p.4610-4618 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4618 |
---|---|
container_issue | 20 |
container_start_page | 4610 |
container_title | Journal of lightwave technology |
container_volume | 27 |
creator | De-Gui Sun Xiaoqi Li Dongxia Wong Yuan Hu Fangliang Luo Hall, T.J. |
description | Silicon-on-insulator (SOI) waveguide designs have shown merit in highly integrated photonic devices and the associated manufacturing technique has achieved an acceptable level of maturity in the microphotonic industry. Thus, the sharp bending of SOI waveguides and/or deflection of light between SOI waveguides are the considerable interest for practical integrated SOI components. In this paper, a theoretical model is proposed for studying a variety of SOI rib waveguide corner mirror structures. Using the model, the precise positioning of the reflector is first studied, then the minimum acceptable reflector length and width are analyzed, and finally an effective reflecting interface (ERI) is found and determined by considering Goos-Hanchen effect. After being optimized with respect to the parameters: dimension (the length and width), position, surface roughness and tilt angle of mirror plane, and material refractive index of reflector, and their relations, the transfer efficiency of the corner mirror can achieve over 96% and 92% at the mirror-plane tilt-angles of respective 0deg and 1deg over a wide range of the corner angles of 80-120deg even accounting for the 100-Aring surface roughness of reflector is considered. The results of the model are validated via a full simulation using the commercial software tool: OptiFDTD. |
doi_str_mv | 10.1109/JLT.2009.2025609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5089475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5089475</ieee_id><sourcerecordid>1031307644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-39a2162accd50b30da366f8e0ab22745570aa0d65c0c34a384d4b36e47988e0d3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWB97wc0gKG5Gb96ZpRQflVrBBy6H20xGUqYzNekI_femtLhwIYQbyP3OIZxDyAmFK0qhuH4cv10xgCINJhUUO2RApTQ5Y5TvkgFoznOjmdgnBzHOAKgQRg_I5KmrXOPbzwzbKpv0cxe8xSa7abFZRR-zugvZq2-87do8nVEb-waX6fHFT7MP_Hafva9cNuxC60I8Ins1NtEdb-9D8n53-zZ8yMfP96PhzTi33IhlzgtkVDG0tpIw5VAhV6o2DnDKmBZSakCESkkLlgtMmkpMuXJCFyZRFT8kFxvfRei-eheX5dxH65oGW9f1seSKMwNKJ_DyX5ACpxy0EiKhZ3_QWdeHlEMsjTQpP1AmQbCBbOhiDK4uF8HPMaySU7kuokxFlOsiym0RSXK-9cWYoq0DttbHXx1LnBbF-qunG847537XEkwhtOQ_gBqPNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858733068</pqid></control><display><type>article</type><title>Modeling and Numerical Analysis for Silicon-on-Insulator Rib Waveguide Corners</title><source>IEEE Electronic Library (IEL)</source><creator>De-Gui Sun ; Xiaoqi Li ; Dongxia Wong ; Yuan Hu ; Fangliang Luo ; Hall, T.J.</creator><creatorcontrib>De-Gui Sun ; Xiaoqi Li ; Dongxia Wong ; Yuan Hu ; Fangliang Luo ; Hall, T.J.</creatorcontrib><description>Silicon-on-insulator (SOI) waveguide designs have shown merit in highly integrated photonic devices and the associated manufacturing technique has achieved an acceptable level of maturity in the microphotonic industry. Thus, the sharp bending of SOI waveguides and/or deflection of light between SOI waveguides are the considerable interest for practical integrated SOI components. In this paper, a theoretical model is proposed for studying a variety of SOI rib waveguide corner mirror structures. Using the model, the precise positioning of the reflector is first studied, then the minimum acceptable reflector length and width are analyzed, and finally an effective reflecting interface (ERI) is found and determined by considering Goos-Hanchen effect. After being optimized with respect to the parameters: dimension (the length and width), position, surface roughness and tilt angle of mirror plane, and material refractive index of reflector, and their relations, the transfer efficiency of the corner mirror can achieve over 96% and 92% at the mirror-plane tilt-angles of respective 0deg and 1deg over a wide range of the corner angles of 80-120deg even accounting for the 100-Aring surface roughness of reflector is considered. The results of the model are validated via a full simulation using the commercial software tool: OptiFDTD.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2009.2025609</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceptability ; Angle of reflection ; Applied sciences ; Circuit properties ; Corners ; Effective reflecting interface ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Integrated optics. Optical fibers and wave guides ; Manufacturing industries ; Mathematical models ; Mirrors ; Numerical analysis ; Numerical models ; Optical and optoelectronic circuits ; optical transfer efficiency ; Reflectors ; Refractive index ; Rough surfaces ; Silicon on insulator technology ; silicon-on-insulator (SOI) rib waveguide ; Studies ; Surface roughness ; Waveguide components ; waveguide corner mirror ; Waveguide theory ; Waveguides</subject><ispartof>Journal of lightwave technology, 2009-10, Vol.27 (20), p.4610-4618</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-39a2162accd50b30da366f8e0ab22745570aa0d65c0c34a384d4b36e47988e0d3</citedby><cites>FETCH-LOGICAL-c384t-39a2162accd50b30da366f8e0ab22745570aa0d65c0c34a384d4b36e47988e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5089475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5089475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22027497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De-Gui Sun</creatorcontrib><creatorcontrib>Xiaoqi Li</creatorcontrib><creatorcontrib>Dongxia Wong</creatorcontrib><creatorcontrib>Yuan Hu</creatorcontrib><creatorcontrib>Fangliang Luo</creatorcontrib><creatorcontrib>Hall, T.J.</creatorcontrib><title>Modeling and Numerical Analysis for Silicon-on-Insulator Rib Waveguide Corners</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Silicon-on-insulator (SOI) waveguide designs have shown merit in highly integrated photonic devices and the associated manufacturing technique has achieved an acceptable level of maturity in the microphotonic industry. Thus, the sharp bending of SOI waveguides and/or deflection of light between SOI waveguides are the considerable interest for practical integrated SOI components. In this paper, a theoretical model is proposed for studying a variety of SOI rib waveguide corner mirror structures. Using the model, the precise positioning of the reflector is first studied, then the minimum acceptable reflector length and width are analyzed, and finally an effective reflecting interface (ERI) is found and determined by considering Goos-Hanchen effect. After being optimized with respect to the parameters: dimension (the length and width), position, surface roughness and tilt angle of mirror plane, and material refractive index of reflector, and their relations, the transfer efficiency of the corner mirror can achieve over 96% and 92% at the mirror-plane tilt-angles of respective 0deg and 1deg over a wide range of the corner angles of 80-120deg even accounting for the 100-Aring surface roughness of reflector is considered. The results of the model are validated via a full simulation using the commercial software tool: OptiFDTD.</description><subject>Acceptability</subject><subject>Angle of reflection</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Corners</subject><subject>Effective reflecting interface</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Manufacturing industries</subject><subject>Mathematical models</subject><subject>Mirrors</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Optical and optoelectronic circuits</subject><subject>optical transfer efficiency</subject><subject>Reflectors</subject><subject>Refractive index</subject><subject>Rough surfaces</subject><subject>Silicon on insulator technology</subject><subject>silicon-on-insulator (SOI) rib waveguide</subject><subject>Studies</subject><subject>Surface roughness</subject><subject>Waveguide components</subject><subject>waveguide corner mirror</subject><subject>Waveguide theory</subject><subject>Waveguides</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLAzEUhYMoWB97wc0gKG5Gb96ZpRQflVrBBy6H20xGUqYzNekI_femtLhwIYQbyP3OIZxDyAmFK0qhuH4cv10xgCINJhUUO2RApTQ5Y5TvkgFoznOjmdgnBzHOAKgQRg_I5KmrXOPbzwzbKpv0cxe8xSa7abFZRR-zugvZq2-87do8nVEb-waX6fHFT7MP_Hafva9cNuxC60I8Ins1NtEdb-9D8n53-zZ8yMfP96PhzTi33IhlzgtkVDG0tpIw5VAhV6o2DnDKmBZSakCESkkLlgtMmkpMuXJCFyZRFT8kFxvfRei-eheX5dxH65oGW9f1seSKMwNKJ_DyX5ACpxy0EiKhZ3_QWdeHlEMsjTQpP1AmQbCBbOhiDK4uF8HPMaySU7kuokxFlOsiym0RSXK-9cWYoq0DttbHXx1LnBbF-qunG847537XEkwhtOQ_gBqPNQ</recordid><startdate>20091015</startdate><enddate>20091015</enddate><creator>De-Gui Sun</creator><creator>Xiaoqi Li</creator><creator>Dongxia Wong</creator><creator>Yuan Hu</creator><creator>Fangliang Luo</creator><creator>Hall, T.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20091015</creationdate><title>Modeling and Numerical Analysis for Silicon-on-Insulator Rib Waveguide Corners</title><author>De-Gui Sun ; Xiaoqi Li ; Dongxia Wong ; Yuan Hu ; Fangliang Luo ; Hall, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-39a2162accd50b30da366f8e0ab22745570aa0d65c0c34a384d4b36e47988e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceptability</topic><topic>Angle of reflection</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Corners</topic><topic>Effective reflecting interface</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Manufacturing industries</topic><topic>Mathematical models</topic><topic>Mirrors</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Optical and optoelectronic circuits</topic><topic>optical transfer efficiency</topic><topic>Reflectors</topic><topic>Refractive index</topic><topic>Rough surfaces</topic><topic>Silicon on insulator technology</topic><topic>silicon-on-insulator (SOI) rib waveguide</topic><topic>Studies</topic><topic>Surface roughness</topic><topic>Waveguide components</topic><topic>waveguide corner mirror</topic><topic>Waveguide theory</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De-Gui Sun</creatorcontrib><creatorcontrib>Xiaoqi Li</creatorcontrib><creatorcontrib>Dongxia Wong</creatorcontrib><creatorcontrib>Yuan Hu</creatorcontrib><creatorcontrib>Fangliang Luo</creatorcontrib><creatorcontrib>Hall, T.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De-Gui Sun</au><au>Xiaoqi Li</au><au>Dongxia Wong</au><au>Yuan Hu</au><au>Fangliang Luo</au><au>Hall, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Numerical Analysis for Silicon-on-Insulator Rib Waveguide Corners</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2009-10-15</date><risdate>2009</risdate><volume>27</volume><issue>20</issue><spage>4610</spage><epage>4618</epage><pages>4610-4618</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Silicon-on-insulator (SOI) waveguide designs have shown merit in highly integrated photonic devices and the associated manufacturing technique has achieved an acceptable level of maturity in the microphotonic industry. Thus, the sharp bending of SOI waveguides and/or deflection of light between SOI waveguides are the considerable interest for practical integrated SOI components. In this paper, a theoretical model is proposed for studying a variety of SOI rib waveguide corner mirror structures. Using the model, the precise positioning of the reflector is first studied, then the minimum acceptable reflector length and width are analyzed, and finally an effective reflecting interface (ERI) is found and determined by considering Goos-Hanchen effect. After being optimized with respect to the parameters: dimension (the length and width), position, surface roughness and tilt angle of mirror plane, and material refractive index of reflector, and their relations, the transfer efficiency of the corner mirror can achieve over 96% and 92% at the mirror-plane tilt-angles of respective 0deg and 1deg over a wide range of the corner angles of 80-120deg even accounting for the 100-Aring surface roughness of reflector is considered. The results of the model are validated via a full simulation using the commercial software tool: OptiFDTD.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2009.2025609</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2009-10, Vol.27 (20), p.4610-4618 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_5089475 |
source | IEEE Electronic Library (IEL) |
subjects | Acceptability Angle of reflection Applied sciences Circuit properties Corners Effective reflecting interface Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Integrated optics. Optical fibers and wave guides Manufacturing industries Mathematical models Mirrors Numerical analysis Numerical models Optical and optoelectronic circuits optical transfer efficiency Reflectors Refractive index Rough surfaces Silicon on insulator technology silicon-on-insulator (SOI) rib waveguide Studies Surface roughness Waveguide components waveguide corner mirror Waveguide theory Waveguides |
title | Modeling and Numerical Analysis for Silicon-on-Insulator Rib Waveguide Corners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Numerical%20Analysis%20for%20Silicon-on-Insulator%20Rib%20Waveguide%20Corners&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=De-Gui%20Sun&rft.date=2009-10-15&rft.volume=27&rft.issue=20&rft.spage=4610&rft.epage=4618&rft.pages=4610-4618&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2009.2025609&rft_dat=%3Cproquest_RIE%3E1031307644%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858733068&rft_id=info:pmid/&rft_ieee_id=5089475&rfr_iscdi=true |