Optimal sampling geometries for TV-norm reconstruction of fMRI data

This study explores the ability to reconstruct functional magnetic resonance imaging (fMRI) brain slices from a limited number of K-space samples. We use compressed sensing methods to reconstruct brain imaging activity using different K-space sampling geometries. To determine the optimal sampling ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jeromin, O.M., Calhoun, V.D., Pattichis, M.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1401
container_issue
container_start_page 1397
container_title
container_volume
creator Jeromin, O.M.
Calhoun, V.D.
Pattichis, M.S.
description This study explores the ability to reconstruct functional magnetic resonance imaging (fMRI) brain slices from a limited number of K-space samples. We use compressed sensing methods to reconstruct brain imaging activity using different K-space sampling geometries. To determine the optimal sampling geometry, we compute the reconstruction error. Here, for each geometry, we also estimate the optimal weighting parameters for the total variation (TV) norm and L-2 norm penalty functions. Initial results show that the optimal sampling geometry varies significantly as a function of the required reduction in K-space sampling density (for 60% to 90% reduction). Furthermore, the reconstructed fMRI slices can be used to accurately detect regions of neural activity from a largely reduced number of K-space samples.
doi_str_mv 10.1109/ACSSC.2008.5074649
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5074649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5074649</ieee_id><sourcerecordid>5074649</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c2f4787ae25c6fd18f9f023f4edfcb2f1eea0a8fcb2a374c9f1d03e9425caf633</originalsourceid><addsrcrecordid>eNo1UNtKw0AUXG9grPkBfdkfSDx7SXb3sQSrhUrBVl_LmpxTIrmxiQ_-vRHrvMzADMMwjN0JSIUA97AsdrsilQA2zcDoXLszdiO01Fo6LeQ5i2Rm8kQqUBcsdsb-ewCXLBKQ2SRXTl2zeBw_YYbOlHU2YsV2mOrWN3z07dDU3ZEfsW9xCjWOnPrA9-9J14eWByz7bpzCVznVfcd74vTyuuaVn_wtuyLfjBifeMHeVo_74jnZbJ_WxXKT1MJkU1JK0sYajzIrc6qEJUcgFWmsqPyQJBA9ePurvTK6dCQqUOj0nPeUK7Vg93-9NSIehjDvDt-H0x_qB6pwUJU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal sampling geometries for TV-norm reconstruction of fMRI data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jeromin, O.M. ; Calhoun, V.D. ; Pattichis, M.S.</creator><creatorcontrib>Jeromin, O.M. ; Calhoun, V.D. ; Pattichis, M.S.</creatorcontrib><description>This study explores the ability to reconstruct functional magnetic resonance imaging (fMRI) brain slices from a limited number of K-space samples. We use compressed sensing methods to reconstruct brain imaging activity using different K-space sampling geometries. To determine the optimal sampling geometry, we compute the reconstruction error. Here, for each geometry, we also estimate the optimal weighting parameters for the total variation (TV) norm and L-2 norm penalty functions. Initial results show that the optimal sampling geometry varies significantly as a function of the required reduction in K-space sampling density (for 60% to 90% reduction). Furthermore, the reconstructed fMRI slices can be used to accurately detect regions of neural activity from a largely reduced number of K-space samples.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781424429400</identifier><identifier>ISBN: 1424429404</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1424429412</identifier><identifier>EISBN: 9781424429417</identifier><identifier>DOI: 10.1109/ACSSC.2008.5074649</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain ; Compressed sensing ; Finite difference methods ; Geometry ; Image coding ; Image reconstruction ; Magnetic resonance imaging ; Sampling methods ; Wavelet domain</subject><ispartof>2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, p.1397-1401</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5074649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5074649$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jeromin, O.M.</creatorcontrib><creatorcontrib>Calhoun, V.D.</creatorcontrib><creatorcontrib>Pattichis, M.S.</creatorcontrib><title>Optimal sampling geometries for TV-norm reconstruction of fMRI data</title><title>2008 42nd Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>This study explores the ability to reconstruct functional magnetic resonance imaging (fMRI) brain slices from a limited number of K-space samples. We use compressed sensing methods to reconstruct brain imaging activity using different K-space sampling geometries. To determine the optimal sampling geometry, we compute the reconstruction error. Here, for each geometry, we also estimate the optimal weighting parameters for the total variation (TV) norm and L-2 norm penalty functions. Initial results show that the optimal sampling geometry varies significantly as a function of the required reduction in K-space sampling density (for 60% to 90% reduction). Furthermore, the reconstructed fMRI slices can be used to accurately detect regions of neural activity from a largely reduced number of K-space samples.</description><subject>Brain</subject><subject>Compressed sensing</subject><subject>Finite difference methods</subject><subject>Geometry</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>Sampling methods</subject><subject>Wavelet domain</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781424429400</isbn><isbn>1424429404</isbn><isbn>1424429412</isbn><isbn>9781424429417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKw0AUXG9grPkBfdkfSDx7SXb3sQSrhUrBVl_LmpxTIrmxiQ_-vRHrvMzADMMwjN0JSIUA97AsdrsilQA2zcDoXLszdiO01Fo6LeQ5i2Rm8kQqUBcsdsb-ewCXLBKQ2SRXTl2zeBw_YYbOlHU2YsV2mOrWN3z07dDU3ZEfsW9xCjWOnPrA9-9J14eWByz7bpzCVznVfcd74vTyuuaVn_wtuyLfjBifeMHeVo_74jnZbJ_WxXKT1MJkU1JK0sYajzIrc6qEJUcgFWmsqPyQJBA9ePurvTK6dCQqUOj0nPeUK7Vg93-9NSIehjDvDt-H0x_qB6pwUJU</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Jeromin, O.M.</creator><creator>Calhoun, V.D.</creator><creator>Pattichis, M.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200810</creationdate><title>Optimal sampling geometries for TV-norm reconstruction of fMRI data</title><author>Jeromin, O.M. ; Calhoun, V.D. ; Pattichis, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c2f4787ae25c6fd18f9f023f4edfcb2f1eea0a8fcb2a374c9f1d03e9425caf633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Brain</topic><topic>Compressed sensing</topic><topic>Finite difference methods</topic><topic>Geometry</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>Sampling methods</topic><topic>Wavelet domain</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeromin, O.M.</creatorcontrib><creatorcontrib>Calhoun, V.D.</creatorcontrib><creatorcontrib>Pattichis, M.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jeromin, O.M.</au><au>Calhoun, V.D.</au><au>Pattichis, M.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal sampling geometries for TV-norm reconstruction of fMRI data</atitle><btitle>2008 42nd Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2008-10</date><risdate>2008</risdate><spage>1397</spage><epage>1401</epage><pages>1397-1401</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781424429400</isbn><isbn>1424429404</isbn><eisbn>1424429412</eisbn><eisbn>9781424429417</eisbn><abstract>This study explores the ability to reconstruct functional magnetic resonance imaging (fMRI) brain slices from a limited number of K-space samples. We use compressed sensing methods to reconstruct brain imaging activity using different K-space sampling geometries. To determine the optimal sampling geometry, we compute the reconstruction error. Here, for each geometry, we also estimate the optimal weighting parameters for the total variation (TV) norm and L-2 norm penalty functions. Initial results show that the optimal sampling geometry varies significantly as a function of the required reduction in K-space sampling density (for 60% to 90% reduction). Furthermore, the reconstructed fMRI slices can be used to accurately detect regions of neural activity from a largely reduced number of K-space samples.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2008.5074649</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, p.1397-1401
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_5074649
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain
Compressed sensing
Finite difference methods
Geometry
Image coding
Image reconstruction
Magnetic resonance imaging
Sampling methods
Wavelet domain
title Optimal sampling geometries for TV-norm reconstruction of fMRI data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20sampling%20geometries%20for%20TV-norm%20reconstruction%20of%20fMRI%20data&rft.btitle=2008%2042nd%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Jeromin,%20O.M.&rft.date=2008-10&rft.spage=1397&rft.epage=1401&rft.pages=1397-1401&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781424429400&rft.isbn_list=1424429404&rft_id=info:doi/10.1109/ACSSC.2008.5074649&rft_dat=%3Cieee_6IE%3E5074649%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429412&rft.eisbn_list=9781424429417&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5074649&rfr_iscdi=true