Dynamic spectrum access with learning for cognitive radio

We study the problem of cooperative dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). Assuming Markovian state-evolutions for the primary channels, we propose a greedy channel selection and access policy that satisfies an interfer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Unnikrishnan, J., Veeravalli, V.V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue
container_start_page 103
container_title
container_volume
creator Unnikrishnan, J.
Veeravalli, V.V.
description We study the problem of cooperative dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). Assuming Markovian state-evolutions for the primary channels, we propose a greedy channel selection and access policy that satisfies an interference constraint and also outperforms some existing schemes in average throughput. When the distribution of the signal from the primary is unknown and belongs to a parameterized family, we develop an algorithm that can learn the parameter of the distribution still guaranteeing the interference constraint. This algorithm also outperforms the popular approach that assumes a worst-case value for the parameter thus illustrating the sub-optimality of the popular worst-case approach.
doi_str_mv 10.1109/ACSSC.2008.5074371
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5074371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5074371</ieee_id><sourcerecordid>5074371</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a9ca3a64f69b690989572ae8b7f9e51b796d454206f7f62fecc113d0d52e95fe3</originalsourceid><addsrcrecordid>eNo1kMlOwzAURc0kUUp_ADb-gYTn2W9ZhTJIlVgU1pXjPBejNqmSAOrfg0S5m7M40llcxm4ElEIA3s2r1aoqJYAvDTitnDhhV0JLrSVqIU_ZRBpnC6lAnbEZOv_vAM7ZRIDxhVWoLtlsGD7gd9ooj37C8P7Qhl2OfNhTHPvPHQ8x0jDw7zy-8y2Fvs3thqeu57HbtHnMX8T70OTuml2ksB1oduSUvT0sXqunYvny-FzNl0UWzoxFwBhUsDpZrC0CejROBvK1S0hG1A5to42WYJNLViaKUQjVQGMkoUmkpuz2r5uJaL3v8y70h_XxBfUD7xpMBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic spectrum access with learning for cognitive radio</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Unnikrishnan, J. ; Veeravalli, V.V.</creator><creatorcontrib>Unnikrishnan, J. ; Veeravalli, V.V.</creatorcontrib><description>We study the problem of cooperative dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). Assuming Markovian state-evolutions for the primary channels, we propose a greedy channel selection and access policy that satisfies an interference constraint and also outperforms some existing schemes in average throughput. When the distribution of the signal from the primary is unknown and belongs to a parameterized family, we develop an algorithm that can learn the parameter of the distribution still guaranteeing the interference constraint. This algorithm also outperforms the popular approach that assumes a worst-case value for the parameter thus illustrating the sub-optimality of the popular worst-case approach.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781424429400</identifier><identifier>ISBN: 1424429404</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1424429412</identifier><identifier>EISBN: 9781424429417</identifier><identifier>DOI: 10.1109/ACSSC.2008.5074371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Cognitive radio ; Condition monitoring ; Interference constraints ; Probability ; Radio transmitters ; Statistics ; Throughput ; Uncertainty</subject><ispartof>2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, p.103-107</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5074371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5074371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Unnikrishnan, J.</creatorcontrib><creatorcontrib>Veeravalli, V.V.</creatorcontrib><title>Dynamic spectrum access with learning for cognitive radio</title><title>2008 42nd Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>We study the problem of cooperative dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). Assuming Markovian state-evolutions for the primary channels, we propose a greedy channel selection and access policy that satisfies an interference constraint and also outperforms some existing schemes in average throughput. When the distribution of the signal from the primary is unknown and belongs to a parameterized family, we develop an algorithm that can learn the parameter of the distribution still guaranteeing the interference constraint. This algorithm also outperforms the popular approach that assumes a worst-case value for the parameter thus illustrating the sub-optimality of the popular worst-case approach.</description><subject>Bandwidth</subject><subject>Cognitive radio</subject><subject>Condition monitoring</subject><subject>Interference constraints</subject><subject>Probability</subject><subject>Radio transmitters</subject><subject>Statistics</subject><subject>Throughput</subject><subject>Uncertainty</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781424429400</isbn><isbn>1424429404</isbn><isbn>1424429412</isbn><isbn>9781424429417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlOwzAURc0kUUp_ADb-gYTn2W9ZhTJIlVgU1pXjPBejNqmSAOrfg0S5m7M40llcxm4ElEIA3s2r1aoqJYAvDTitnDhhV0JLrSVqIU_ZRBpnC6lAnbEZOv_vAM7ZRIDxhVWoLtlsGD7gd9ooj37C8P7Qhl2OfNhTHPvPHQ8x0jDw7zy-8y2Fvs3thqeu57HbtHnMX8T70OTuml2ksB1oduSUvT0sXqunYvny-FzNl0UWzoxFwBhUsDpZrC0CejROBvK1S0hG1A5to42WYJNLViaKUQjVQGMkoUmkpuz2r5uJaL3v8y70h_XxBfUD7xpMBg</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Unnikrishnan, J.</creator><creator>Veeravalli, V.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200810</creationdate><title>Dynamic spectrum access with learning for cognitive radio</title><author>Unnikrishnan, J. ; Veeravalli, V.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a9ca3a64f69b690989572ae8b7f9e51b796d454206f7f62fecc113d0d52e95fe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bandwidth</topic><topic>Cognitive radio</topic><topic>Condition monitoring</topic><topic>Interference constraints</topic><topic>Probability</topic><topic>Radio transmitters</topic><topic>Statistics</topic><topic>Throughput</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Unnikrishnan, J.</creatorcontrib><creatorcontrib>Veeravalli, V.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Unnikrishnan, J.</au><au>Veeravalli, V.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic spectrum access with learning for cognitive radio</atitle><btitle>2008 42nd Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2008-10</date><risdate>2008</risdate><spage>103</spage><epage>107</epage><pages>103-107</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781424429400</isbn><isbn>1424429404</isbn><eisbn>1424429412</eisbn><eisbn>9781424429417</eisbn><abstract>We study the problem of cooperative dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). Assuming Markovian state-evolutions for the primary channels, we propose a greedy channel selection and access policy that satisfies an interference constraint and also outperforms some existing schemes in average throughput. When the distribution of the signal from the primary is unknown and belongs to a parameterized family, we develop an algorithm that can learn the parameter of the distribution still guaranteeing the interference constraint. This algorithm also outperforms the popular approach that assumes a worst-case value for the parameter thus illustrating the sub-optimality of the popular worst-case approach.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2008.5074371</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2008 42nd Asilomar Conference on Signals, Systems and Computers, 2008, p.103-107
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_5074371
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bandwidth
Cognitive radio
Condition monitoring
Interference constraints
Probability
Radio transmitters
Statistics
Throughput
Uncertainty
title Dynamic spectrum access with learning for cognitive radio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20spectrum%20access%20with%20learning%20for%20cognitive%20radio&rft.btitle=2008%2042nd%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Unnikrishnan,%20J.&rft.date=2008-10&rft.spage=103&rft.epage=107&rft.pages=103-107&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781424429400&rft.isbn_list=1424429404&rft_id=info:doi/10.1109/ACSSC.2008.5074371&rft_dat=%3Cieee_6IE%3E5074371%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429412&rft.eisbn_list=9781424429417&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5074371&rfr_iscdi=true