Delamination mechanisms of thermal interface materials in organic packages during reflow and moisture soaking

A thermal interface material (TIM) is typically a compliant material with high thermal conductivity that is applied between a heat-generating chip and a heat spreader in an electronic package. For a high-conductivity polymeric TIM, the adhesion strength between the TIM and its mating interfaces is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiantao Zheng, Jadhav, V., Wakil, J., Coffin, J., Iruvanti, S., Langlois, R., Yarmchuk, E., Gaynes, M., Liu, H., Sikka, K., Brofman, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue
container_start_page 469
container_title
container_volume
creator Jiantao Zheng
Jadhav, V.
Wakil, J.
Coffin, J.
Iruvanti, S.
Langlois, R.
Yarmchuk, E.
Gaynes, M.
Liu, H.
Sikka, K.
Brofman, P.
description A thermal interface material (TIM) is typically a compliant material with high thermal conductivity that is applied between a heat-generating chip and a heat spreader in an electronic package. For a high-conductivity polymeric TIM, the adhesion strength between the TIM and its mating interfaces is typically weak, making the TIM susceptible to degradation when subjected to environmental stresses. At typical chip operating temperatures which are below the curing temperature of the TIM, a compressive force acts on the TIM at the chip center due to the CTE mismatch between the die and the organic chip carrier. Conversely at high BGA(Ball Grid Array) or card-attach reflow temperatures, the TIM center is under tension and the TIM tends to either cohesively separate or adhesively separate from the interfaces. Also, during moisture soaking, such as 85C/85%RH, the organic chip carrier absorbs moisture and expands. The hygroscopic expansion of the organic chip carrier is of the same order of magnitude as the thermal expansion. This expansion reduces the compressive force acting on the TIM, and for certain package constructions, this can lead to degradation of thermal performance. In this paper, the delamination mechanism of a polymer-based thermal interface material in an organic package during reflow and moisture soaking is investigated. The in-situ deformation of the TIM bondline was measured by a digital image correlation (DIC) method on a cross-sectioned part. The TIM bondline deformation was also captured by a digital camera. The coefficients of thermal expansion and hygroscopic expansion for different organic materials were measured, and a finite element analysis of the hygroscopic expansion and TIM bondline deformation was conducted. The affect of T&H stress was analyzed using an equivalent CTE concept.
doi_str_mv 10.1109/ECTC.2009.5074056
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5074056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5074056</ieee_id><sourcerecordid>5074056</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a43142f1e1f95e01d28dd3dd5b66c6033a1095b4f57b42ba3d37dcce7f65c6583</originalsourceid><addsrcrecordid>eNo1UMtOwzAQNC-JUvoBiIt_IMVvJ0cUnlIlLuVcbfxoTeOkslMh_h5LlLnMamZ2tRqE7ihZUkqah-d23S4ZIc1SEi2IVGdo0eiaCiYKtGLnaMa41pXUTF2gm39Dqks0K_GmkpLwa7TI-YsUCMlpLWYoPrkeYhhgCuOAozM7GEKOGY8eTzuXIvQ4DJNLHozDEcoUoM9Fw2PalqzBBzB72LqM7TGFYYuT8_34jWGwOI4hT8fkcB5hX7xbdOXLtluceI4-X57X7Vu1-nh9bx9XVaBaThUIXv731FHfSEeoZbW13FrZKWUU4RxKJbITXupOsA645doa47RX0ihZ8zm6_7sbnHObQwoR0s_m1Bz_BTZDX78</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Delamination mechanisms of thermal interface materials in organic packages during reflow and moisture soaking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiantao Zheng ; Jadhav, V. ; Wakil, J. ; Coffin, J. ; Iruvanti, S. ; Langlois, R. ; Yarmchuk, E. ; Gaynes, M. ; Liu, H. ; Sikka, K. ; Brofman, P.</creator><creatorcontrib>Jiantao Zheng ; Jadhav, V. ; Wakil, J. ; Coffin, J. ; Iruvanti, S. ; Langlois, R. ; Yarmchuk, E. ; Gaynes, M. ; Liu, H. ; Sikka, K. ; Brofman, P.</creatorcontrib><description>A thermal interface material (TIM) is typically a compliant material with high thermal conductivity that is applied between a heat-generating chip and a heat spreader in an electronic package. For a high-conductivity polymeric TIM, the adhesion strength between the TIM and its mating interfaces is typically weak, making the TIM susceptible to degradation when subjected to environmental stresses. At typical chip operating temperatures which are below the curing temperature of the TIM, a compressive force acts on the TIM at the chip center due to the CTE mismatch between the die and the organic chip carrier. Conversely at high BGA(Ball Grid Array) or card-attach reflow temperatures, the TIM center is under tension and the TIM tends to either cohesively separate or adhesively separate from the interfaces. Also, during moisture soaking, such as 85C/85%RH, the organic chip carrier absorbs moisture and expands. The hygroscopic expansion of the organic chip carrier is of the same order of magnitude as the thermal expansion. This expansion reduces the compressive force acting on the TIM, and for certain package constructions, this can lead to degradation of thermal performance. In this paper, the delamination mechanism of a polymer-based thermal interface material in an organic package during reflow and moisture soaking is investigated. The in-situ deformation of the TIM bondline was measured by a digital image correlation (DIC) method on a cross-sectioned part. The TIM bondline deformation was also captured by a digital camera. The coefficients of thermal expansion and hygroscopic expansion for different organic materials were measured, and a finite element analysis of the hygroscopic expansion and TIM bondline deformation was conducted. The affect of T&amp;H stress was analyzed using an equivalent CTE concept.</description><identifier>ISSN: 0569-5503</identifier><identifier>ISBN: 1424444756</identifier><identifier>ISBN: 9781424444755</identifier><identifier>EISSN: 2377-5726</identifier><identifier>EISBN: 9781424444762</identifier><identifier>EISBN: 1424444764</identifier><identifier>DOI: 10.1109/ECTC.2009.5074056</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bonding ; Conducting materials ; Delamination ; Electronic packaging thermal management ; Moisture ; Organic materials ; Polymers ; Temperature ; Thermal conductivity ; Thermal expansion</subject><ispartof>2009 59th Electronic Components and Technology Conference, 2009, p.469-474</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5074056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5074056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiantao Zheng</creatorcontrib><creatorcontrib>Jadhav, V.</creatorcontrib><creatorcontrib>Wakil, J.</creatorcontrib><creatorcontrib>Coffin, J.</creatorcontrib><creatorcontrib>Iruvanti, S.</creatorcontrib><creatorcontrib>Langlois, R.</creatorcontrib><creatorcontrib>Yarmchuk, E.</creatorcontrib><creatorcontrib>Gaynes, M.</creatorcontrib><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Sikka, K.</creatorcontrib><creatorcontrib>Brofman, P.</creatorcontrib><title>Delamination mechanisms of thermal interface materials in organic packages during reflow and moisture soaking</title><title>2009 59th Electronic Components and Technology Conference</title><addtitle>ECTC</addtitle><description>A thermal interface material (TIM) is typically a compliant material with high thermal conductivity that is applied between a heat-generating chip and a heat spreader in an electronic package. For a high-conductivity polymeric TIM, the adhesion strength between the TIM and its mating interfaces is typically weak, making the TIM susceptible to degradation when subjected to environmental stresses. At typical chip operating temperatures which are below the curing temperature of the TIM, a compressive force acts on the TIM at the chip center due to the CTE mismatch between the die and the organic chip carrier. Conversely at high BGA(Ball Grid Array) or card-attach reflow temperatures, the TIM center is under tension and the TIM tends to either cohesively separate or adhesively separate from the interfaces. Also, during moisture soaking, such as 85C/85%RH, the organic chip carrier absorbs moisture and expands. The hygroscopic expansion of the organic chip carrier is of the same order of magnitude as the thermal expansion. This expansion reduces the compressive force acting on the TIM, and for certain package constructions, this can lead to degradation of thermal performance. In this paper, the delamination mechanism of a polymer-based thermal interface material in an organic package during reflow and moisture soaking is investigated. The in-situ deformation of the TIM bondline was measured by a digital image correlation (DIC) method on a cross-sectioned part. The TIM bondline deformation was also captured by a digital camera. The coefficients of thermal expansion and hygroscopic expansion for different organic materials were measured, and a finite element analysis of the hygroscopic expansion and TIM bondline deformation was conducted. The affect of T&amp;H stress was analyzed using an equivalent CTE concept.</description><subject>Bonding</subject><subject>Conducting materials</subject><subject>Delamination</subject><subject>Electronic packaging thermal management</subject><subject>Moisture</subject><subject>Organic materials</subject><subject>Polymers</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><issn>0569-5503</issn><issn>2377-5726</issn><isbn>1424444756</isbn><isbn>9781424444755</isbn><isbn>9781424444762</isbn><isbn>1424444764</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtOwzAQNC-JUvoBiIt_IMVvJ0cUnlIlLuVcbfxoTeOkslMh_h5LlLnMamZ2tRqE7ihZUkqah-d23S4ZIc1SEi2IVGdo0eiaCiYKtGLnaMa41pXUTF2gm39Dqks0K_GmkpLwa7TI-YsUCMlpLWYoPrkeYhhgCuOAozM7GEKOGY8eTzuXIvQ4DJNLHozDEcoUoM9Fw2PalqzBBzB72LqM7TGFYYuT8_34jWGwOI4hT8fkcB5hX7xbdOXLtluceI4-X57X7Vu1-nh9bx9XVaBaThUIXv731FHfSEeoZbW13FrZKWUU4RxKJbITXupOsA645doa47RX0ihZ8zm6_7sbnHObQwoR0s_m1Bz_BTZDX78</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Jiantao Zheng</creator><creator>Jadhav, V.</creator><creator>Wakil, J.</creator><creator>Coffin, J.</creator><creator>Iruvanti, S.</creator><creator>Langlois, R.</creator><creator>Yarmchuk, E.</creator><creator>Gaynes, M.</creator><creator>Liu, H.</creator><creator>Sikka, K.</creator><creator>Brofman, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200905</creationdate><title>Delamination mechanisms of thermal interface materials in organic packages during reflow and moisture soaking</title><author>Jiantao Zheng ; Jadhav, V. ; Wakil, J. ; Coffin, J. ; Iruvanti, S. ; Langlois, R. ; Yarmchuk, E. ; Gaynes, M. ; Liu, H. ; Sikka, K. ; Brofman, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a43142f1e1f95e01d28dd3dd5b66c6033a1095b4f57b42ba3d37dcce7f65c6583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bonding</topic><topic>Conducting materials</topic><topic>Delamination</topic><topic>Electronic packaging thermal management</topic><topic>Moisture</topic><topic>Organic materials</topic><topic>Polymers</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiantao Zheng</creatorcontrib><creatorcontrib>Jadhav, V.</creatorcontrib><creatorcontrib>Wakil, J.</creatorcontrib><creatorcontrib>Coffin, J.</creatorcontrib><creatorcontrib>Iruvanti, S.</creatorcontrib><creatorcontrib>Langlois, R.</creatorcontrib><creatorcontrib>Yarmchuk, E.</creatorcontrib><creatorcontrib>Gaynes, M.</creatorcontrib><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Sikka, K.</creatorcontrib><creatorcontrib>Brofman, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiantao Zheng</au><au>Jadhav, V.</au><au>Wakil, J.</au><au>Coffin, J.</au><au>Iruvanti, S.</au><au>Langlois, R.</au><au>Yarmchuk, E.</au><au>Gaynes, M.</au><au>Liu, H.</au><au>Sikka, K.</au><au>Brofman, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Delamination mechanisms of thermal interface materials in organic packages during reflow and moisture soaking</atitle><btitle>2009 59th Electronic Components and Technology Conference</btitle><stitle>ECTC</stitle><date>2009-05</date><risdate>2009</risdate><spage>469</spage><epage>474</epage><pages>469-474</pages><issn>0569-5503</issn><eissn>2377-5726</eissn><isbn>1424444756</isbn><isbn>9781424444755</isbn><eisbn>9781424444762</eisbn><eisbn>1424444764</eisbn><abstract>A thermal interface material (TIM) is typically a compliant material with high thermal conductivity that is applied between a heat-generating chip and a heat spreader in an electronic package. For a high-conductivity polymeric TIM, the adhesion strength between the TIM and its mating interfaces is typically weak, making the TIM susceptible to degradation when subjected to environmental stresses. At typical chip operating temperatures which are below the curing temperature of the TIM, a compressive force acts on the TIM at the chip center due to the CTE mismatch between the die and the organic chip carrier. Conversely at high BGA(Ball Grid Array) or card-attach reflow temperatures, the TIM center is under tension and the TIM tends to either cohesively separate or adhesively separate from the interfaces. Also, during moisture soaking, such as 85C/85%RH, the organic chip carrier absorbs moisture and expands. The hygroscopic expansion of the organic chip carrier is of the same order of magnitude as the thermal expansion. This expansion reduces the compressive force acting on the TIM, and for certain package constructions, this can lead to degradation of thermal performance. In this paper, the delamination mechanism of a polymer-based thermal interface material in an organic package during reflow and moisture soaking is investigated. The in-situ deformation of the TIM bondline was measured by a digital image correlation (DIC) method on a cross-sectioned part. The TIM bondline deformation was also captured by a digital camera. The coefficients of thermal expansion and hygroscopic expansion for different organic materials were measured, and a finite element analysis of the hygroscopic expansion and TIM bondline deformation was conducted. The affect of T&amp;H stress was analyzed using an equivalent CTE concept.</abstract><pub>IEEE</pub><doi>10.1109/ECTC.2009.5074056</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0569-5503
ispartof 2009 59th Electronic Components and Technology Conference, 2009, p.469-474
issn 0569-5503
2377-5726
language eng
recordid cdi_ieee_primary_5074056
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bonding
Conducting materials
Delamination
Electronic packaging thermal management
Moisture
Organic materials
Polymers
Temperature
Thermal conductivity
Thermal expansion
title Delamination mechanisms of thermal interface materials in organic packages during reflow and moisture soaking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Delamination%20mechanisms%20of%20thermal%20interface%20materials%20in%20organic%20packages%20during%20reflow%20and%20moisture%20soaking&rft.btitle=2009%2059th%20Electronic%20Components%20and%20Technology%20Conference&rft.au=Jiantao%20Zheng&rft.date=2009-05&rft.spage=469&rft.epage=474&rft.pages=469-474&rft.issn=0569-5503&rft.eissn=2377-5726&rft.isbn=1424444756&rft.isbn_list=9781424444755&rft_id=info:doi/10.1109/ECTC.2009.5074056&rft_dat=%3Cieee_6IE%3E5074056%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424444762&rft.eisbn_list=1424444764&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5074056&rfr_iscdi=true