A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm

The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pooshfam, H., Abdullah, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue
container_start_page 315
container_title
container_volume
creator Pooshfam, H.
Abdullah, R.
description The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the large amount of data and the other is complexity of it. Many scientists and physicians are working on brain projects in different aspects. Capturing and processing human brain images are not easy tasks. The fact that the Talairach brain fails to match individual scans motivate us to use other type of approaches and algorithms. With using brain anatomy as a source for integrating different types of images, researchers try to segment the human brain in different aspects. By taking advantage of hierarchical clustering algorithm we try to present an effective and more accurate approach for human brain image processing.
doi_str_mv 10.1109/AMS.2009.102
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5072003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5072003</ieee_id><sourcerecordid>5072003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d3e9229b74e3bf2f156b34571fa98f5442130fe515b9fcb5dc72c0c1c5f07e443</originalsourceid><addsrcrecordid>eNotkD1PwzAURY0AiVK6sbH4D6T42c9xPYaI0kqtQHxMDJXjPKdGaVM5Yei_pwLucqWjqzNcxm5BTAGEvS_Wb1MphJ2CkGfsWpjcapXjDM_ZxJoZoERE0Ggv2Egqk2cAOV6xSd9_iVNQSyVxxD4L_pK6Q9dTzdc0bLuahy7xh-Ti_gTq6F3LlzvXEH-lJvZDckPs9rw68kWk5JLf_k7K9rsfKMV9w4u26VIctrsbdhlc29Pkv8fsY_74Xi6y1fPTsixWWQSjh6xWZKW0lUFSVZABdF4p1AaCs7OgESUoEUiDrmzwla69kV548DoIQ4hqzO7-vJGINocUdy4dN1qY0z9K_QDrB1R7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pooshfam, H. ; Abdullah, R.</creator><creatorcontrib>Pooshfam, H. ; Abdullah, R.</creatorcontrib><description>The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the large amount of data and the other is complexity of it. Many scientists and physicians are working on brain projects in different aspects. Capturing and processing human brain images are not easy tasks. The fact that the Talairach brain fails to match individual scans motivate us to use other type of approaches and algorithms. With using brain anatomy as a source for integrating different types of images, researchers try to segment the human brain in different aspects. By taking advantage of hierarchical clustering algorithm we try to present an effective and more accurate approach for human brain image processing.</description><identifier>ISSN: 2376-1164</identifier><identifier>ISBN: 9781424441549</identifier><identifier>ISBN: 1424441544</identifier><identifier>EISBN: 0769536484</identifier><identifier>EISBN: 9780769536484</identifier><identifier>DOI: 10.1109/AMS.2009.102</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anatomy ; Biomedical imaging ; Brain ; Clustering algorithms ; Hierarchical Clustering Algorithm ; Humane Brain ; Humans ; Image databases ; Image registration ; Image segmentation ; Magnetic resonance imaging ; Neuro-informatic ; Visual databases</subject><ispartof>2009 Third Asia International Conference on Modelling &amp; Simulation, 2009, p.315-319</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5072003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5072003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pooshfam, H.</creatorcontrib><creatorcontrib>Abdullah, R.</creatorcontrib><title>A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm</title><title>2009 Third Asia International Conference on Modelling &amp; Simulation</title><addtitle>ASIAMS</addtitle><description>The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the large amount of data and the other is complexity of it. Many scientists and physicians are working on brain projects in different aspects. Capturing and processing human brain images are not easy tasks. The fact that the Talairach brain fails to match individual scans motivate us to use other type of approaches and algorithms. With using brain anatomy as a source for integrating different types of images, researchers try to segment the human brain in different aspects. By taking advantage of hierarchical clustering algorithm we try to present an effective and more accurate approach for human brain image processing.</description><subject>Anatomy</subject><subject>Biomedical imaging</subject><subject>Brain</subject><subject>Clustering algorithms</subject><subject>Hierarchical Clustering Algorithm</subject><subject>Humane Brain</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image registration</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Neuro-informatic</subject><subject>Visual databases</subject><issn>2376-1164</issn><isbn>9781424441549</isbn><isbn>1424441544</isbn><isbn>0769536484</isbn><isbn>9780769536484</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkD1PwzAURY0AiVK6sbH4D6T42c9xPYaI0kqtQHxMDJXjPKdGaVM5Yei_pwLucqWjqzNcxm5BTAGEvS_Wb1MphJ2CkGfsWpjcapXjDM_ZxJoZoERE0Ggv2Egqk2cAOV6xSd9_iVNQSyVxxD4L_pK6Q9dTzdc0bLuahy7xh-Ti_gTq6F3LlzvXEH-lJvZDckPs9rw68kWk5JLf_k7K9rsfKMV9w4u26VIctrsbdhlc29Pkv8fsY_74Xi6y1fPTsixWWQSjh6xWZKW0lUFSVZABdF4p1AaCs7OgESUoEUiDrmzwla69kV548DoIQ4hqzO7-vJGINocUdy4dN1qY0z9K_QDrB1R7</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Pooshfam, H.</creator><creator>Abdullah, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm</title><author>Pooshfam, H. ; Abdullah, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d3e9229b74e3bf2f156b34571fa98f5442130fe515b9fcb5dc72c0c1c5f07e443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anatomy</topic><topic>Biomedical imaging</topic><topic>Brain</topic><topic>Clustering algorithms</topic><topic>Hierarchical Clustering Algorithm</topic><topic>Humane Brain</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image registration</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Neuro-informatic</topic><topic>Visual databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Pooshfam, H.</creatorcontrib><creatorcontrib>Abdullah, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pooshfam, H.</au><au>Abdullah, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm</atitle><btitle>2009 Third Asia International Conference on Modelling &amp; Simulation</btitle><stitle>ASIAMS</stitle><date>2009-05</date><risdate>2009</risdate><spage>315</spage><epage>319</epage><pages>315-319</pages><issn>2376-1164</issn><isbn>9781424441549</isbn><isbn>1424441544</isbn><eisbn>0769536484</eisbn><eisbn>9780769536484</eisbn><abstract>The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the large amount of data and the other is complexity of it. Many scientists and physicians are working on brain projects in different aspects. Capturing and processing human brain images are not easy tasks. The fact that the Talairach brain fails to match individual scans motivate us to use other type of approaches and algorithms. With using brain anatomy as a source for integrating different types of images, researchers try to segment the human brain in different aspects. By taking advantage of hierarchical clustering algorithm we try to present an effective and more accurate approach for human brain image processing.</abstract><pub>IEEE</pub><doi>10.1109/AMS.2009.102</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2376-1164
ispartof 2009 Third Asia International Conference on Modelling & Simulation, 2009, p.315-319
issn 2376-1164
language eng
recordid cdi_ieee_primary_5072003
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Anatomy
Biomedical imaging
Brain
Clustering algorithms
Hierarchical Clustering Algorithm
Humane Brain
Humans
Image databases
Image registration
Image segmentation
Magnetic resonance imaging
Neuro-informatic
Visual databases
title A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Proposed%20Method%20for%20Brain%20Medical%20Image%20Registration%20by%20Hierarchical%20Clustering%20Algorithm&rft.btitle=2009%20Third%20Asia%20International%20Conference%20on%20Modelling%20&%20Simulation&rft.au=Pooshfam,%20H.&rft.date=2009-05&rft.spage=315&rft.epage=319&rft.pages=315-319&rft.issn=2376-1164&rft.isbn=9781424441549&rft.isbn_list=1424441544&rft_id=info:doi/10.1109/AMS.2009.102&rft_dat=%3Cieee_6IE%3E5072003%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769536484&rft.eisbn_list=9780769536484&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5072003&rfr_iscdi=true