A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm
The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the la...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 319 |
---|---|
container_issue | |
container_start_page | 315 |
container_title | |
container_volume | |
creator | Pooshfam, H. Abdullah, R. |
description | The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the large amount of data and the other is complexity of it. Many scientists and physicians are working on brain projects in different aspects. Capturing and processing human brain images are not easy tasks. The fact that the Talairach brain fails to match individual scans motivate us to use other type of approaches and algorithms. With using brain anatomy as a source for integrating different types of images, researchers try to segment the human brain in different aspects. By taking advantage of hierarchical clustering algorithm we try to present an effective and more accurate approach for human brain image processing. |
doi_str_mv | 10.1109/AMS.2009.102 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5072003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5072003</ieee_id><sourcerecordid>5072003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d3e9229b74e3bf2f156b34571fa98f5442130fe515b9fcb5dc72c0c1c5f07e443</originalsourceid><addsrcrecordid>eNotkD1PwzAURY0AiVK6sbH4D6T42c9xPYaI0kqtQHxMDJXjPKdGaVM5Yei_pwLucqWjqzNcxm5BTAGEvS_Wb1MphJ2CkGfsWpjcapXjDM_ZxJoZoERE0Ggv2Egqk2cAOV6xSd9_iVNQSyVxxD4L_pK6Q9dTzdc0bLuahy7xh-Ti_gTq6F3LlzvXEH-lJvZDckPs9rw68kWk5JLf_k7K9rsfKMV9w4u26VIctrsbdhlc29Pkv8fsY_74Xi6y1fPTsixWWQSjh6xWZKW0lUFSVZABdF4p1AaCs7OgESUoEUiDrmzwla69kV548DoIQ4hqzO7-vJGINocUdy4dN1qY0z9K_QDrB1R7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pooshfam, H. ; Abdullah, R.</creator><creatorcontrib>Pooshfam, H. ; Abdullah, R.</creatorcontrib><description>The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the large amount of data and the other is complexity of it. Many scientists and physicians are working on brain projects in different aspects. Capturing and processing human brain images are not easy tasks. The fact that the Talairach brain fails to match individual scans motivate us to use other type of approaches and algorithms. With using brain anatomy as a source for integrating different types of images, researchers try to segment the human brain in different aspects. By taking advantage of hierarchical clustering algorithm we try to present an effective and more accurate approach for human brain image processing.</description><identifier>ISSN: 2376-1164</identifier><identifier>ISBN: 9781424441549</identifier><identifier>ISBN: 1424441544</identifier><identifier>EISBN: 0769536484</identifier><identifier>EISBN: 9780769536484</identifier><identifier>DOI: 10.1109/AMS.2009.102</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anatomy ; Biomedical imaging ; Brain ; Clustering algorithms ; Hierarchical Clustering Algorithm ; Humane Brain ; Humans ; Image databases ; Image registration ; Image segmentation ; Magnetic resonance imaging ; Neuro-informatic ; Visual databases</subject><ispartof>2009 Third Asia International Conference on Modelling & Simulation, 2009, p.315-319</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5072003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5072003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pooshfam, H.</creatorcontrib><creatorcontrib>Abdullah, R.</creatorcontrib><title>A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm</title><title>2009 Third Asia International Conference on Modelling & Simulation</title><addtitle>ASIAMS</addtitle><description>The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the large amount of data and the other is complexity of it. Many scientists and physicians are working on brain projects in different aspects. Capturing and processing human brain images are not easy tasks. The fact that the Talairach brain fails to match individual scans motivate us to use other type of approaches and algorithms. With using brain anatomy as a source for integrating different types of images, researchers try to segment the human brain in different aspects. By taking advantage of hierarchical clustering algorithm we try to present an effective and more accurate approach for human brain image processing.</description><subject>Anatomy</subject><subject>Biomedical imaging</subject><subject>Brain</subject><subject>Clustering algorithms</subject><subject>Hierarchical Clustering Algorithm</subject><subject>Humane Brain</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image registration</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Neuro-informatic</subject><subject>Visual databases</subject><issn>2376-1164</issn><isbn>9781424441549</isbn><isbn>1424441544</isbn><isbn>0769536484</isbn><isbn>9780769536484</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkD1PwzAURY0AiVK6sbH4D6T42c9xPYaI0kqtQHxMDJXjPKdGaVM5Yei_pwLucqWjqzNcxm5BTAGEvS_Wb1MphJ2CkGfsWpjcapXjDM_ZxJoZoERE0Ggv2Egqk2cAOV6xSd9_iVNQSyVxxD4L_pK6Q9dTzdc0bLuahy7xh-Ti_gTq6F3LlzvXEH-lJvZDckPs9rw68kWk5JLf_k7K9rsfKMV9w4u26VIctrsbdhlc29Pkv8fsY_74Xi6y1fPTsixWWQSjh6xWZKW0lUFSVZABdF4p1AaCs7OgESUoEUiDrmzwla69kV548DoIQ4hqzO7-vJGINocUdy4dN1qY0z9K_QDrB1R7</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Pooshfam, H.</creator><creator>Abdullah, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm</title><author>Pooshfam, H. ; Abdullah, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d3e9229b74e3bf2f156b34571fa98f5442130fe515b9fcb5dc72c0c1c5f07e443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anatomy</topic><topic>Biomedical imaging</topic><topic>Brain</topic><topic>Clustering algorithms</topic><topic>Hierarchical Clustering Algorithm</topic><topic>Humane Brain</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image registration</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Neuro-informatic</topic><topic>Visual databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Pooshfam, H.</creatorcontrib><creatorcontrib>Abdullah, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pooshfam, H.</au><au>Abdullah, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm</atitle><btitle>2009 Third Asia International Conference on Modelling & Simulation</btitle><stitle>ASIAMS</stitle><date>2009-05</date><risdate>2009</risdate><spage>315</spage><epage>319</epage><pages>315-319</pages><issn>2376-1164</issn><isbn>9781424441549</isbn><isbn>1424441544</isbn><eisbn>0769536484</eisbn><eisbn>9780769536484</eisbn><abstract>The explosive growth in medical imaging technologies has been matched by a tremendous increase in the number of investigations centred on the structural and functional organisation of the human body. Therefore working with neuroscientific data has faced experts with two major problems; one is the large amount of data and the other is complexity of it. Many scientists and physicians are working on brain projects in different aspects. Capturing and processing human brain images are not easy tasks. The fact that the Talairach brain fails to match individual scans motivate us to use other type of approaches and algorithms. With using brain anatomy as a source for integrating different types of images, researchers try to segment the human brain in different aspects. By taking advantage of hierarchical clustering algorithm we try to present an effective and more accurate approach for human brain image processing.</abstract><pub>IEEE</pub><doi>10.1109/AMS.2009.102</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2376-1164 |
ispartof | 2009 Third Asia International Conference on Modelling & Simulation, 2009, p.315-319 |
issn | 2376-1164 |
language | eng |
recordid | cdi_ieee_primary_5072003 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Anatomy Biomedical imaging Brain Clustering algorithms Hierarchical Clustering Algorithm Humane Brain Humans Image databases Image registration Image segmentation Magnetic resonance imaging Neuro-informatic Visual databases |
title | A Proposed Method for Brain Medical Image Registration by Hierarchical Clustering Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Proposed%20Method%20for%20Brain%20Medical%20Image%20Registration%20by%20Hierarchical%20Clustering%20Algorithm&rft.btitle=2009%20Third%20Asia%20International%20Conference%20on%20Modelling%20&%20Simulation&rft.au=Pooshfam,%20H.&rft.date=2009-05&rft.spage=315&rft.epage=319&rft.pages=315-319&rft.issn=2376-1164&rft.isbn=9781424441549&rft.isbn_list=1424441544&rft_id=info:doi/10.1109/AMS.2009.102&rft_dat=%3Cieee_6IE%3E5072003%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769536484&rft.eisbn_list=9780769536484&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5072003&rfr_iscdi=true |