Applying Map-Reduce Paradigm for Parallel Closed Cube Computation

After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sergey, K., Yury, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 62
container_title
container_volume
creator Sergey, K.
Yury, K.
description After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to loss lessly decrease amount of data to be stored. Recently developed parallel computation framework Map-Reduce lead to a new wave of interest to large-scale algorithms for data analysis (and to so called cloud-computing paradigm). This paper is devoted to applying such approaches to data and computation intensive task of OLAP-cube computation. We show that there are two scales of Map-Reduce applicability (for local multicore or multiprocessor server and multi-server clusters), present cube construction and query processing algorithms used at the both levels. Experimental results demonstrate that algorithms are scalable.
doi_str_mv 10.1109/DBKDA.2009.32
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5071813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5071813</ieee_id><sourcerecordid>5071813</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5ca099d46b88a15351a68e6e9a5fd395f287838defb15f436d5fdcea0a9ad5133</originalsourceid><addsrcrecordid>eNotjk1LxDAYhCMiqGuPnrzkD7Qmzfexdl0VVxRR8La8bd4skXZb-nHYf29R5zLMMzAMIdecZZwzd7u-e14XWc6Yy0R-QhJnLDPaKaEUY6fkkstcSiG1-TonyTh-s0VSCensBSmKvm-O8bCnL9Cn7-jnGukbDODjvqWhG35D02BDy6Yb0dNyrpCWXdvPE0yxO1yRswDNiMm_r8jn5v6jfEy3rw9PZbFNIzdqSlUNzDkvdWUt8OUbB21RowMVvHAq5NZYYT2GiqsghfYLrxEYOPCKC7EiN3-7ERF3_RBbGI47xQy3S_sD8UdJ1A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying Map-Reduce Paradigm for Parallel Closed Cube Computation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sergey, K. ; Yury, K.</creator><creatorcontrib>Sergey, K. ; Yury, K.</creatorcontrib><description>After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to loss lessly decrease amount of data to be stored. Recently developed parallel computation framework Map-Reduce lead to a new wave of interest to large-scale algorithms for data analysis (and to so called cloud-computing paradigm). This paper is devoted to applying such approaches to data and computation intensive task of OLAP-cube computation. We show that there are two scales of Map-Reduce applicability (for local multicore or multiprocessor server and multi-server clusters), present cube construction and query processing algorithms used at the both levels. Experimental results demonstrate that algorithms are scalable.</description><identifier>ISBN: 142443467X</identifier><identifier>ISBN: 9781424434671</identifier><identifier>EISBN: 9780769535500</identifier><identifier>EISBN: 076953550X</identifier><identifier>DOI: 10.1109/DBKDA.2009.32</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; closed cubes ; Clustering algorithms ; Concurrent computing ; Large-scale systems ; Lattices ; map reduce ; Mathematical programming ; Multicore processing ; olap ; Parallel programming ; Partitioning algorithms</subject><ispartof>2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications, 2009, p.62-67</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5071813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5071813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sergey, K.</creatorcontrib><creatorcontrib>Yury, K.</creatorcontrib><title>Applying Map-Reduce Paradigm for Parallel Closed Cube Computation</title><title>2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications</title><addtitle>DBKDA</addtitle><description>After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to loss lessly decrease amount of data to be stored. Recently developed parallel computation framework Map-Reduce lead to a new wave of interest to large-scale algorithms for data analysis (and to so called cloud-computing paradigm). This paper is devoted to applying such approaches to data and computation intensive task of OLAP-cube computation. We show that there are two scales of Map-Reduce applicability (for local multicore or multiprocessor server and multi-server clusters), present cube construction and query processing algorithms used at the both levels. Experimental results demonstrate that algorithms are scalable.</description><subject>Aggregates</subject><subject>closed cubes</subject><subject>Clustering algorithms</subject><subject>Concurrent computing</subject><subject>Large-scale systems</subject><subject>Lattices</subject><subject>map reduce</subject><subject>Mathematical programming</subject><subject>Multicore processing</subject><subject>olap</subject><subject>Parallel programming</subject><subject>Partitioning algorithms</subject><isbn>142443467X</isbn><isbn>9781424434671</isbn><isbn>9780769535500</isbn><isbn>076953550X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjk1LxDAYhCMiqGuPnrzkD7Qmzfexdl0VVxRR8La8bd4skXZb-nHYf29R5zLMMzAMIdecZZwzd7u-e14XWc6Yy0R-QhJnLDPaKaEUY6fkkstcSiG1-TonyTh-s0VSCensBSmKvm-O8bCnL9Cn7-jnGukbDODjvqWhG35D02BDy6Yb0dNyrpCWXdvPE0yxO1yRswDNiMm_r8jn5v6jfEy3rw9PZbFNIzdqSlUNzDkvdWUt8OUbB21RowMVvHAq5NZYYT2GiqsghfYLrxEYOPCKC7EiN3-7ERF3_RBbGI47xQy3S_sD8UdJ1A</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Sergey, K.</creator><creator>Yury, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Applying Map-Reduce Paradigm for Parallel Closed Cube Computation</title><author>Sergey, K. ; Yury, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5ca099d46b88a15351a68e6e9a5fd395f287838defb15f436d5fdcea0a9ad5133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aggregates</topic><topic>closed cubes</topic><topic>Clustering algorithms</topic><topic>Concurrent computing</topic><topic>Large-scale systems</topic><topic>Lattices</topic><topic>map reduce</topic><topic>Mathematical programming</topic><topic>Multicore processing</topic><topic>olap</topic><topic>Parallel programming</topic><topic>Partitioning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Sergey, K.</creatorcontrib><creatorcontrib>Yury, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sergey, K.</au><au>Yury, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying Map-Reduce Paradigm for Parallel Closed Cube Computation</atitle><btitle>2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications</btitle><stitle>DBKDA</stitle><date>2009-03</date><risdate>2009</risdate><spage>62</spage><epage>67</epage><pages>62-67</pages><isbn>142443467X</isbn><isbn>9781424434671</isbn><eisbn>9780769535500</eisbn><eisbn>076953550X</eisbn><abstract>After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to loss lessly decrease amount of data to be stored. Recently developed parallel computation framework Map-Reduce lead to a new wave of interest to large-scale algorithms for data analysis (and to so called cloud-computing paradigm). This paper is devoted to applying such approaches to data and computation intensive task of OLAP-cube computation. We show that there are two scales of Map-Reduce applicability (for local multicore or multiprocessor server and multi-server clusters), present cube construction and query processing algorithms used at the both levels. Experimental results demonstrate that algorithms are scalable.</abstract><pub>IEEE</pub><doi>10.1109/DBKDA.2009.32</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142443467X
ispartof 2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications, 2009, p.62-67
issn
language eng
recordid cdi_ieee_primary_5071813
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregates
closed cubes
Clustering algorithms
Concurrent computing
Large-scale systems
Lattices
map reduce
Mathematical programming
Multicore processing
olap
Parallel programming
Partitioning algorithms
title Applying Map-Reduce Paradigm for Parallel Closed Cube Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20Map-Reduce%20Paradigm%20for%20Parallel%20Closed%20Cube%20Computation&rft.btitle=2009%20First%20International%20Confernce%20on%20Advances%20in%20Databases,%20Knowledge,%20and%20Data%20Applications&rft.au=Sergey,%20K.&rft.date=2009-03&rft.spage=62&rft.epage=67&rft.pages=62-67&rft.isbn=142443467X&rft.isbn_list=9781424434671&rft_id=info:doi/10.1109/DBKDA.2009.32&rft_dat=%3Cieee_6IE%3E5071813%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769535500&rft.eisbn_list=076953550X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5071813&rfr_iscdi=true