Applying Map-Reduce Paradigm for Parallel Closed Cube Computation
After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | |
container_start_page | 62 |
container_title | |
container_volume | |
creator | Sergey, K. Yury, K. |
description | After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to loss lessly decrease amount of data to be stored. Recently developed parallel computation framework Map-Reduce lead to a new wave of interest to large-scale algorithms for data analysis (and to so called cloud-computing paradigm). This paper is devoted to applying such approaches to data and computation intensive task of OLAP-cube computation. We show that there are two scales of Map-Reduce applicability (for local multicore or multiprocessor server and multi-server clusters), present cube construction and query processing algorithms used at the both levels. Experimental results demonstrate that algorithms are scalable. |
doi_str_mv | 10.1109/DBKDA.2009.32 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5071813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5071813</ieee_id><sourcerecordid>5071813</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5ca099d46b88a15351a68e6e9a5fd395f287838defb15f436d5fdcea0a9ad5133</originalsourceid><addsrcrecordid>eNotjk1LxDAYhCMiqGuPnrzkD7Qmzfexdl0VVxRR8La8bd4skXZb-nHYf29R5zLMMzAMIdecZZwzd7u-e14XWc6Yy0R-QhJnLDPaKaEUY6fkkstcSiG1-TonyTh-s0VSCensBSmKvm-O8bCnL9Cn7-jnGukbDODjvqWhG35D02BDy6Yb0dNyrpCWXdvPE0yxO1yRswDNiMm_r8jn5v6jfEy3rw9PZbFNIzdqSlUNzDkvdWUt8OUbB21RowMVvHAq5NZYYT2GiqsghfYLrxEYOPCKC7EiN3-7ERF3_RBbGI47xQy3S_sD8UdJ1A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying Map-Reduce Paradigm for Parallel Closed Cube Computation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sergey, K. ; Yury, K.</creator><creatorcontrib>Sergey, K. ; Yury, K.</creatorcontrib><description>After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to loss lessly decrease amount of data to be stored. Recently developed parallel computation framework Map-Reduce lead to a new wave of interest to large-scale algorithms for data analysis (and to so called cloud-computing paradigm). This paper is devoted to applying such approaches to data and computation intensive task of OLAP-cube computation. We show that there are two scales of Map-Reduce applicability (for local multicore or multiprocessor server and multi-server clusters), present cube construction and query processing algorithms used at the both levels. Experimental results demonstrate that algorithms are scalable.</description><identifier>ISBN: 142443467X</identifier><identifier>ISBN: 9781424434671</identifier><identifier>EISBN: 9780769535500</identifier><identifier>EISBN: 076953550X</identifier><identifier>DOI: 10.1109/DBKDA.2009.32</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; closed cubes ; Clustering algorithms ; Concurrent computing ; Large-scale systems ; Lattices ; map reduce ; Mathematical programming ; Multicore processing ; olap ; Parallel programming ; Partitioning algorithms</subject><ispartof>2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications, 2009, p.62-67</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5071813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5071813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sergey, K.</creatorcontrib><creatorcontrib>Yury, K.</creatorcontrib><title>Applying Map-Reduce Paradigm for Parallel Closed Cube Computation</title><title>2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications</title><addtitle>DBKDA</addtitle><description>After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to loss lessly decrease amount of data to be stored. Recently developed parallel computation framework Map-Reduce lead to a new wave of interest to large-scale algorithms for data analysis (and to so called cloud-computing paradigm). This paper is devoted to applying such approaches to data and computation intensive task of OLAP-cube computation. We show that there are two scales of Map-Reduce applicability (for local multicore or multiprocessor server and multi-server clusters), present cube construction and query processing algorithms used at the both levels. Experimental results demonstrate that algorithms are scalable.</description><subject>Aggregates</subject><subject>closed cubes</subject><subject>Clustering algorithms</subject><subject>Concurrent computing</subject><subject>Large-scale systems</subject><subject>Lattices</subject><subject>map reduce</subject><subject>Mathematical programming</subject><subject>Multicore processing</subject><subject>olap</subject><subject>Parallel programming</subject><subject>Partitioning algorithms</subject><isbn>142443467X</isbn><isbn>9781424434671</isbn><isbn>9780769535500</isbn><isbn>076953550X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjk1LxDAYhCMiqGuPnrzkD7Qmzfexdl0VVxRR8La8bd4skXZb-nHYf29R5zLMMzAMIdecZZwzd7u-e14XWc6Yy0R-QhJnLDPaKaEUY6fkkstcSiG1-TonyTh-s0VSCensBSmKvm-O8bCnL9Cn7-jnGukbDODjvqWhG35D02BDy6Yb0dNyrpCWXdvPE0yxO1yRswDNiMm_r8jn5v6jfEy3rw9PZbFNIzdqSlUNzDkvdWUt8OUbB21RowMVvHAq5NZYYT2GiqsghfYLrxEYOPCKC7EiN3-7ERF3_RBbGI47xQy3S_sD8UdJ1A</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Sergey, K.</creator><creator>Yury, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Applying Map-Reduce Paradigm for Parallel Closed Cube Computation</title><author>Sergey, K. ; Yury, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5ca099d46b88a15351a68e6e9a5fd395f287838defb15f436d5fdcea0a9ad5133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aggregates</topic><topic>closed cubes</topic><topic>Clustering algorithms</topic><topic>Concurrent computing</topic><topic>Large-scale systems</topic><topic>Lattices</topic><topic>map reduce</topic><topic>Mathematical programming</topic><topic>Multicore processing</topic><topic>olap</topic><topic>Parallel programming</topic><topic>Partitioning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Sergey, K.</creatorcontrib><creatorcontrib>Yury, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sergey, K.</au><au>Yury, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying Map-Reduce Paradigm for Parallel Closed Cube Computation</atitle><btitle>2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications</btitle><stitle>DBKDA</stitle><date>2009-03</date><risdate>2009</risdate><spage>62</spage><epage>67</epage><pages>62-67</pages><isbn>142443467X</isbn><isbn>9781424434671</isbn><eisbn>9780769535500</eisbn><eisbn>076953550X</eisbn><abstract>After many years of studies, efficient data cube computation remains an open field of research due to ever-growing amounts of data. One of the most efficient algorithms (quotient cubes) is based on the notion of cube cells closure, condensing groups of cells into equivalence classes, which allows to loss lessly decrease amount of data to be stored. Recently developed parallel computation framework Map-Reduce lead to a new wave of interest to large-scale algorithms for data analysis (and to so called cloud-computing paradigm). This paper is devoted to applying such approaches to data and computation intensive task of OLAP-cube computation. We show that there are two scales of Map-Reduce applicability (for local multicore or multiprocessor server and multi-server clusters), present cube construction and query processing algorithms used at the both levels. Experimental results demonstrate that algorithms are scalable.</abstract><pub>IEEE</pub><doi>10.1109/DBKDA.2009.32</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 142443467X |
ispartof | 2009 First International Confernce on Advances in Databases, Knowledge, and Data Applications, 2009, p.62-67 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5071813 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aggregates closed cubes Clustering algorithms Concurrent computing Large-scale systems Lattices map reduce Mathematical programming Multicore processing olap Parallel programming Partitioning algorithms |
title | Applying Map-Reduce Paradigm for Parallel Closed Cube Computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20Map-Reduce%20Paradigm%20for%20Parallel%20Closed%20Cube%20Computation&rft.btitle=2009%20First%20International%20Confernce%20on%20Advances%20in%20Databases,%20Knowledge,%20and%20Data%20Applications&rft.au=Sergey,%20K.&rft.date=2009-03&rft.spage=62&rft.epage=67&rft.pages=62-67&rft.isbn=142443467X&rft.isbn_list=9781424434671&rft_id=info:doi/10.1109/DBKDA.2009.32&rft_dat=%3Cieee_6IE%3E5071813%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769535500&rft.eisbn_list=076953550X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5071813&rfr_iscdi=true |