Gesture recognition for interactive controllers using MEMS motion sensors
In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are de...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 940 |
---|---|
container_issue | |
container_start_page | 935 |
container_title | |
container_volume | |
creator | Shengli Zhou Qing Shan Fei Fei Li, W.J. Chung Ping Kwong Wu, P.C.K. Bojun Meng Chan, C.K.H. Liou, J.Y.J. |
description | In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are detected in real-time by 3-axes MEMS accelerometer embedded in a wireless micro sensing mote, which exports sensor data to a PC via Bluetooth protocol. In the data collection stage, in order to realize real-time recognition, an ldquoauto-cutrdquo algorithm was developed to gather the start and stop motions of an input gesture automatically. After comparing several different data processing methods, we chose Discrete Cosine Transforms (DCT) to reduce the dimension of the input gestures. Subsequently, a series of experiments were performed to analyze the influence of sensor sampling frequency and the number of dominant frequencies for various gestures, and then the best combination was selected for our recognition experiments. Finally, the Hidden Markov Model (HMM) was employed to achieve real-time gesture recognition. We have shown that the gesture recognition accuracy could reach 95.7% when 20 training samples of each gesture and 70 testing samples were used. |
doi_str_mv | 10.1109/NEMS.2009.5068728 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5068728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5068728</ieee_id><sourcerecordid>5068728</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ed424a6cd7762271e858737c45dc53102116514af1fb1bf6f8ed45d1839df6f73</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxSMiKHU_gHjJF9g1k_97lFJrodWDei7b7KREthtJUsFv72J7cC7DD96b9xhC7oA1AKx9eFls3hrOWNsopq3h9oJUrbEguZRSC2Yv_zNv-TWpcv5k00g1ob0hqyXmckxIE7q4H0MJcaQ-JhrGgqlzJXwjdXEsKQ4DpkyPOYx7upmS6SH-qTOOOaZ8S658N2SszntGPp4W7_Pnev26XM0f13UAo0qN_dSm0643RnNuAK2yRhgnVe-UAMYBtALZefA72Hnt7eRQPVjR9hMZMSP3p7sBEbdfKRy69LM9P0D8AhJxTtY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gesture recognition for interactive controllers using MEMS motion sensors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shengli Zhou ; Qing Shan ; Fei Fei ; Li, W.J. ; Chung Ping Kwong ; Wu, P.C.K. ; Bojun Meng ; Chan, C.K.H. ; Liou, J.Y.J.</creator><creatorcontrib>Shengli Zhou ; Qing Shan ; Fei Fei ; Li, W.J. ; Chung Ping Kwong ; Wu, P.C.K. ; Bojun Meng ; Chan, C.K.H. ; Liou, J.Y.J.</creatorcontrib><description>In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are detected in real-time by 3-axes MEMS accelerometer embedded in a wireless micro sensing mote, which exports sensor data to a PC via Bluetooth protocol. In the data collection stage, in order to realize real-time recognition, an ldquoauto-cutrdquo algorithm was developed to gather the start and stop motions of an input gesture automatically. After comparing several different data processing methods, we chose Discrete Cosine Transforms (DCT) to reduce the dimension of the input gestures. Subsequently, a series of experiments were performed to analyze the influence of sensor sampling frequency and the number of dominant frequencies for various gestures, and then the best combination was selected for our recognition experiments. Finally, the Hidden Markov Model (HMM) was employed to achieve real-time gesture recognition. We have shown that the gesture recognition accuracy could reach 95.7% when 20 training samples of each gesture and 70 testing samples were used.</description><identifier>ISBN: 9781424446292</identifier><identifier>ISBN: 1424446295</identifier><identifier>EISBN: 9781424446308</identifier><identifier>EISBN: 1424446309</identifier><identifier>DOI: 10.1109/NEMS.2009.5068728</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Control systems ; Discrete cosine transforms ; Frequency ; Gesture recognition ; Hidden Markov models ; Hidden Markove Model ; Humans ; Interactive controller ; MEMS accelerometer ; Micromechanical devices ; Motion control ; Multimedia systems ; Real time systems</subject><ispartof>2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009, p.935-940</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5068728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5068728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shengli Zhou</creatorcontrib><creatorcontrib>Qing Shan</creatorcontrib><creatorcontrib>Fei Fei</creatorcontrib><creatorcontrib>Li, W.J.</creatorcontrib><creatorcontrib>Chung Ping Kwong</creatorcontrib><creatorcontrib>Wu, P.C.K.</creatorcontrib><creatorcontrib>Bojun Meng</creatorcontrib><creatorcontrib>Chan, C.K.H.</creatorcontrib><creatorcontrib>Liou, J.Y.J.</creatorcontrib><title>Gesture recognition for interactive controllers using MEMS motion sensors</title><title>2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems</title><addtitle>NEMS</addtitle><description>In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are detected in real-time by 3-axes MEMS accelerometer embedded in a wireless micro sensing mote, which exports sensor data to a PC via Bluetooth protocol. In the data collection stage, in order to realize real-time recognition, an ldquoauto-cutrdquo algorithm was developed to gather the start and stop motions of an input gesture automatically. After comparing several different data processing methods, we chose Discrete Cosine Transforms (DCT) to reduce the dimension of the input gestures. Subsequently, a series of experiments were performed to analyze the influence of sensor sampling frequency and the number of dominant frequencies for various gestures, and then the best combination was selected for our recognition experiments. Finally, the Hidden Markov Model (HMM) was employed to achieve real-time gesture recognition. We have shown that the gesture recognition accuracy could reach 95.7% when 20 training samples of each gesture and 70 testing samples were used.</description><subject>Acceleration</subject><subject>Control systems</subject><subject>Discrete cosine transforms</subject><subject>Frequency</subject><subject>Gesture recognition</subject><subject>Hidden Markov models</subject><subject>Hidden Markove Model</subject><subject>Humans</subject><subject>Interactive controller</subject><subject>MEMS accelerometer</subject><subject>Micromechanical devices</subject><subject>Motion control</subject><subject>Multimedia systems</subject><subject>Real time systems</subject><isbn>9781424446292</isbn><isbn>1424446295</isbn><isbn>9781424446308</isbn><isbn>1424446309</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxSMiKHU_gHjJF9g1k_97lFJrodWDei7b7KREthtJUsFv72J7cC7DD96b9xhC7oA1AKx9eFls3hrOWNsopq3h9oJUrbEguZRSC2Yv_zNv-TWpcv5k00g1ob0hqyXmckxIE7q4H0MJcaQ-JhrGgqlzJXwjdXEsKQ4DpkyPOYx7upmS6SH-qTOOOaZ8S658N2SszntGPp4W7_Pnev26XM0f13UAo0qN_dSm0643RnNuAK2yRhgnVe-UAMYBtALZefA72Hnt7eRQPVjR9hMZMSP3p7sBEbdfKRy69LM9P0D8AhJxTtY</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Shengli Zhou</creator><creator>Qing Shan</creator><creator>Fei Fei</creator><creator>Li, W.J.</creator><creator>Chung Ping Kwong</creator><creator>Wu, P.C.K.</creator><creator>Bojun Meng</creator><creator>Chan, C.K.H.</creator><creator>Liou, J.Y.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>Gesture recognition for interactive controllers using MEMS motion sensors</title><author>Shengli Zhou ; Qing Shan ; Fei Fei ; Li, W.J. ; Chung Ping Kwong ; Wu, P.C.K. ; Bojun Meng ; Chan, C.K.H. ; Liou, J.Y.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ed424a6cd7762271e858737c45dc53102116514af1fb1bf6f8ed45d1839df6f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Control systems</topic><topic>Discrete cosine transforms</topic><topic>Frequency</topic><topic>Gesture recognition</topic><topic>Hidden Markov models</topic><topic>Hidden Markove Model</topic><topic>Humans</topic><topic>Interactive controller</topic><topic>MEMS accelerometer</topic><topic>Micromechanical devices</topic><topic>Motion control</topic><topic>Multimedia systems</topic><topic>Real time systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Shengli Zhou</creatorcontrib><creatorcontrib>Qing Shan</creatorcontrib><creatorcontrib>Fei Fei</creatorcontrib><creatorcontrib>Li, W.J.</creatorcontrib><creatorcontrib>Chung Ping Kwong</creatorcontrib><creatorcontrib>Wu, P.C.K.</creatorcontrib><creatorcontrib>Bojun Meng</creatorcontrib><creatorcontrib>Chan, C.K.H.</creatorcontrib><creatorcontrib>Liou, J.Y.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shengli Zhou</au><au>Qing Shan</au><au>Fei Fei</au><au>Li, W.J.</au><au>Chung Ping Kwong</au><au>Wu, P.C.K.</au><au>Bojun Meng</au><au>Chan, C.K.H.</au><au>Liou, J.Y.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gesture recognition for interactive controllers using MEMS motion sensors</atitle><btitle>2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems</btitle><stitle>NEMS</stitle><date>2009-01</date><risdate>2009</risdate><spage>935</spage><epage>940</epage><pages>935-940</pages><isbn>9781424446292</isbn><isbn>1424446295</isbn><eisbn>9781424446308</eisbn><eisbn>1424446309</eisbn><abstract>In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are detected in real-time by 3-axes MEMS accelerometer embedded in a wireless micro sensing mote, which exports sensor data to a PC via Bluetooth protocol. In the data collection stage, in order to realize real-time recognition, an ldquoauto-cutrdquo algorithm was developed to gather the start and stop motions of an input gesture automatically. After comparing several different data processing methods, we chose Discrete Cosine Transforms (DCT) to reduce the dimension of the input gestures. Subsequently, a series of experiments were performed to analyze the influence of sensor sampling frequency and the number of dominant frequencies for various gestures, and then the best combination was selected for our recognition experiments. Finally, the Hidden Markov Model (HMM) was employed to achieve real-time gesture recognition. We have shown that the gesture recognition accuracy could reach 95.7% when 20 training samples of each gesture and 70 testing samples were used.</abstract><pub>IEEE</pub><doi>10.1109/NEMS.2009.5068728</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424446292 |
ispartof | 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009, p.935-940 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5068728 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Control systems Discrete cosine transforms Frequency Gesture recognition Hidden Markov models Hidden Markove Model Humans Interactive controller MEMS accelerometer Micromechanical devices Motion control Multimedia systems Real time systems |
title | Gesture recognition for interactive controllers using MEMS motion sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gesture%20recognition%20for%20interactive%20controllers%20using%20MEMS%20motion%20sensors&rft.btitle=2009%204th%20IEEE%20International%20Conference%20on%20Nano/Micro%20Engineered%20and%20Molecular%20Systems&rft.au=Shengli%20Zhou&rft.date=2009-01&rft.spage=935&rft.epage=940&rft.pages=935-940&rft.isbn=9781424446292&rft.isbn_list=1424446295&rft_id=info:doi/10.1109/NEMS.2009.5068728&rft_dat=%3Cieee_6IE%3E5068728%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424446308&rft.eisbn_list=1424446309&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5068728&rfr_iscdi=true |