Gesture recognition for interactive controllers using MEMS motion sensors

In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shengli Zhou, Qing Shan, Fei Fei, Li, W.J., Chung Ping Kwong, Wu, P.C.K., Bojun Meng, Chan, C.K.H., Liou, J.Y.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue
container_start_page 935
container_title
container_volume
creator Shengli Zhou
Qing Shan
Fei Fei
Li, W.J.
Chung Ping Kwong
Wu, P.C.K.
Bojun Meng
Chan, C.K.H.
Liou, J.Y.J.
description In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are detected in real-time by 3-axes MEMS accelerometer embedded in a wireless micro sensing mote, which exports sensor data to a PC via Bluetooth protocol. In the data collection stage, in order to realize real-time recognition, an ldquoauto-cutrdquo algorithm was developed to gather the start and stop motions of an input gesture automatically. After comparing several different data processing methods, we chose Discrete Cosine Transforms (DCT) to reduce the dimension of the input gestures. Subsequently, a series of experiments were performed to analyze the influence of sensor sampling frequency and the number of dominant frequencies for various gestures, and then the best combination was selected for our recognition experiments. Finally, the Hidden Markov Model (HMM) was employed to achieve real-time gesture recognition. We have shown that the gesture recognition accuracy could reach 95.7% when 20 training samples of each gesture and 70 testing samples were used.
doi_str_mv 10.1109/NEMS.2009.5068728
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5068728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5068728</ieee_id><sourcerecordid>5068728</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ed424a6cd7762271e858737c45dc53102116514af1fb1bf6f8ed45d1839df6f73</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxSMiKHU_gHjJF9g1k_97lFJrodWDei7b7KREthtJUsFv72J7cC7DD96b9xhC7oA1AKx9eFls3hrOWNsopq3h9oJUrbEguZRSC2Yv_zNv-TWpcv5k00g1ob0hqyXmckxIE7q4H0MJcaQ-JhrGgqlzJXwjdXEsKQ4DpkyPOYx7upmS6SH-qTOOOaZ8S658N2SszntGPp4W7_Pnev26XM0f13UAo0qN_dSm0643RnNuAK2yRhgnVe-UAMYBtALZefA72Hnt7eRQPVjR9hMZMSP3p7sBEbdfKRy69LM9P0D8AhJxTtY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gesture recognition for interactive controllers using MEMS motion sensors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shengli Zhou ; Qing Shan ; Fei Fei ; Li, W.J. ; Chung Ping Kwong ; Wu, P.C.K. ; Bojun Meng ; Chan, C.K.H. ; Liou, J.Y.J.</creator><creatorcontrib>Shengli Zhou ; Qing Shan ; Fei Fei ; Li, W.J. ; Chung Ping Kwong ; Wu, P.C.K. ; Bojun Meng ; Chan, C.K.H. ; Liou, J.Y.J.</creatorcontrib><description>In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are detected in real-time by 3-axes MEMS accelerometer embedded in a wireless micro sensing mote, which exports sensor data to a PC via Bluetooth protocol. In the data collection stage, in order to realize real-time recognition, an ldquoauto-cutrdquo algorithm was developed to gather the start and stop motions of an input gesture automatically. After comparing several different data processing methods, we chose Discrete Cosine Transforms (DCT) to reduce the dimension of the input gestures. Subsequently, a series of experiments were performed to analyze the influence of sensor sampling frequency and the number of dominant frequencies for various gestures, and then the best combination was selected for our recognition experiments. Finally, the Hidden Markov Model (HMM) was employed to achieve real-time gesture recognition. We have shown that the gesture recognition accuracy could reach 95.7% when 20 training samples of each gesture and 70 testing samples were used.</description><identifier>ISBN: 9781424446292</identifier><identifier>ISBN: 1424446295</identifier><identifier>EISBN: 9781424446308</identifier><identifier>EISBN: 1424446309</identifier><identifier>DOI: 10.1109/NEMS.2009.5068728</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Control systems ; Discrete cosine transforms ; Frequency ; Gesture recognition ; Hidden Markov models ; Hidden Markove Model ; Humans ; Interactive controller ; MEMS accelerometer ; Micromechanical devices ; Motion control ; Multimedia systems ; Real time systems</subject><ispartof>2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009, p.935-940</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5068728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5068728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shengli Zhou</creatorcontrib><creatorcontrib>Qing Shan</creatorcontrib><creatorcontrib>Fei Fei</creatorcontrib><creatorcontrib>Li, W.J.</creatorcontrib><creatorcontrib>Chung Ping Kwong</creatorcontrib><creatorcontrib>Wu, P.C.K.</creatorcontrib><creatorcontrib>Bojun Meng</creatorcontrib><creatorcontrib>Chan, C.K.H.</creatorcontrib><creatorcontrib>Liou, J.Y.J.</creatorcontrib><title>Gesture recognition for interactive controllers using MEMS motion sensors</title><title>2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems</title><addtitle>NEMS</addtitle><description>In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are detected in real-time by 3-axes MEMS accelerometer embedded in a wireless micro sensing mote, which exports sensor data to a PC via Bluetooth protocol. In the data collection stage, in order to realize real-time recognition, an ldquoauto-cutrdquo algorithm was developed to gather the start and stop motions of an input gesture automatically. After comparing several different data processing methods, we chose Discrete Cosine Transforms (DCT) to reduce the dimension of the input gestures. Subsequently, a series of experiments were performed to analyze the influence of sensor sampling frequency and the number of dominant frequencies for various gestures, and then the best combination was selected for our recognition experiments. Finally, the Hidden Markov Model (HMM) was employed to achieve real-time gesture recognition. We have shown that the gesture recognition accuracy could reach 95.7% when 20 training samples of each gesture and 70 testing samples were used.</description><subject>Acceleration</subject><subject>Control systems</subject><subject>Discrete cosine transforms</subject><subject>Frequency</subject><subject>Gesture recognition</subject><subject>Hidden Markov models</subject><subject>Hidden Markove Model</subject><subject>Humans</subject><subject>Interactive controller</subject><subject>MEMS accelerometer</subject><subject>Micromechanical devices</subject><subject>Motion control</subject><subject>Multimedia systems</subject><subject>Real time systems</subject><isbn>9781424446292</isbn><isbn>1424446295</isbn><isbn>9781424446308</isbn><isbn>1424446309</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxSMiKHU_gHjJF9g1k_97lFJrodWDei7b7KREthtJUsFv72J7cC7DD96b9xhC7oA1AKx9eFls3hrOWNsopq3h9oJUrbEguZRSC2Yv_zNv-TWpcv5k00g1ob0hqyXmckxIE7q4H0MJcaQ-JhrGgqlzJXwjdXEsKQ4DpkyPOYx7upmS6SH-qTOOOaZ8S658N2SszntGPp4W7_Pnev26XM0f13UAo0qN_dSm0643RnNuAK2yRhgnVe-UAMYBtALZefA72Hnt7eRQPVjR9hMZMSP3p7sBEbdfKRy69LM9P0D8AhJxTtY</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Shengli Zhou</creator><creator>Qing Shan</creator><creator>Fei Fei</creator><creator>Li, W.J.</creator><creator>Chung Ping Kwong</creator><creator>Wu, P.C.K.</creator><creator>Bojun Meng</creator><creator>Chan, C.K.H.</creator><creator>Liou, J.Y.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>Gesture recognition for interactive controllers using MEMS motion sensors</title><author>Shengli Zhou ; Qing Shan ; Fei Fei ; Li, W.J. ; Chung Ping Kwong ; Wu, P.C.K. ; Bojun Meng ; Chan, C.K.H. ; Liou, J.Y.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ed424a6cd7762271e858737c45dc53102116514af1fb1bf6f8ed45d1839df6f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Control systems</topic><topic>Discrete cosine transforms</topic><topic>Frequency</topic><topic>Gesture recognition</topic><topic>Hidden Markov models</topic><topic>Hidden Markove Model</topic><topic>Humans</topic><topic>Interactive controller</topic><topic>MEMS accelerometer</topic><topic>Micromechanical devices</topic><topic>Motion control</topic><topic>Multimedia systems</topic><topic>Real time systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Shengli Zhou</creatorcontrib><creatorcontrib>Qing Shan</creatorcontrib><creatorcontrib>Fei Fei</creatorcontrib><creatorcontrib>Li, W.J.</creatorcontrib><creatorcontrib>Chung Ping Kwong</creatorcontrib><creatorcontrib>Wu, P.C.K.</creatorcontrib><creatorcontrib>Bojun Meng</creatorcontrib><creatorcontrib>Chan, C.K.H.</creatorcontrib><creatorcontrib>Liou, J.Y.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shengli Zhou</au><au>Qing Shan</au><au>Fei Fei</au><au>Li, W.J.</au><au>Chung Ping Kwong</au><au>Wu, P.C.K.</au><au>Bojun Meng</au><au>Chan, C.K.H.</au><au>Liou, J.Y.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gesture recognition for interactive controllers using MEMS motion sensors</atitle><btitle>2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems</btitle><stitle>NEMS</stitle><date>2009-01</date><risdate>2009</risdate><spage>935</spage><epage>940</epage><pages>935-940</pages><isbn>9781424446292</isbn><isbn>1424446295</isbn><eisbn>9781424446308</eisbn><eisbn>1424446309</eisbn><abstract>In this paper we present our work on real-time human gesture recognition for multimedia interactive controllers through the use of Microelectromechanical Systems (MEMS) 3 axes acceleration sensors. The changes of accelerations in three perpendicular directions due to different gesture motions are detected in real-time by 3-axes MEMS accelerometer embedded in a wireless micro sensing mote, which exports sensor data to a PC via Bluetooth protocol. In the data collection stage, in order to realize real-time recognition, an ldquoauto-cutrdquo algorithm was developed to gather the start and stop motions of an input gesture automatically. After comparing several different data processing methods, we chose Discrete Cosine Transforms (DCT) to reduce the dimension of the input gestures. Subsequently, a series of experiments were performed to analyze the influence of sensor sampling frequency and the number of dominant frequencies for various gestures, and then the best combination was selected for our recognition experiments. Finally, the Hidden Markov Model (HMM) was employed to achieve real-time gesture recognition. We have shown that the gesture recognition accuracy could reach 95.7% when 20 training samples of each gesture and 70 testing samples were used.</abstract><pub>IEEE</pub><doi>10.1109/NEMS.2009.5068728</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424446292
ispartof 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009, p.935-940
issn
language eng
recordid cdi_ieee_primary_5068728
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Control systems
Discrete cosine transforms
Frequency
Gesture recognition
Hidden Markov models
Hidden Markove Model
Humans
Interactive controller
MEMS accelerometer
Micromechanical devices
Motion control
Multimedia systems
Real time systems
title Gesture recognition for interactive controllers using MEMS motion sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gesture%20recognition%20for%20interactive%20controllers%20using%20MEMS%20motion%20sensors&rft.btitle=2009%204th%20IEEE%20International%20Conference%20on%20Nano/Micro%20Engineered%20and%20Molecular%20Systems&rft.au=Shengli%20Zhou&rft.date=2009-01&rft.spage=935&rft.epage=940&rft.pages=935-940&rft.isbn=9781424446292&rft.isbn_list=1424446295&rft_id=info:doi/10.1109/NEMS.2009.5068728&rft_dat=%3Cieee_6IE%3E5068728%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424446308&rft.eisbn_list=1424446309&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5068728&rfr_iscdi=true