An experimental comparison of range image segmentation algorithms

A methodology for evaluating range image segmentation algorithms is proposed. This methodology involves (1) a common set of 40 laser range finder images and 40 structured light scanner images that have manually specified ground truth and (2) a set of defined performance metrics for instances of corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1996-07, Vol.18 (7), p.673-689
Hauptverfasser: Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D.B., Bowyer, K., Eggert, D.W., Fitzgibbon, A., Fisher, R.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 7
container_start_page 673
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 18
creator Hoover, A.
Jean-Baptiste, G.
Jiang, X.
Flynn, P.J.
Bunke, H.
Goldgof, D.B.
Bowyer, K.
Eggert, D.W.
Fitzgibbon, A.
Fisher, R.B.
description A methodology for evaluating range image segmentation algorithms is proposed. This methodology involves (1) a common set of 40 laser range finder images and 40 structured light scanner images that have manually specified ground truth and (2) a set of defined performance metrics for instances of correctly segmented, missed, and noise regions, over- and under-segmentation, and accuracy of the recovered geometry. A tool is used to objectively compare a machine generated segmentation against the specified ground truth. Four research groups have contributed to evaluate their own algorithm for segmenting a range image into planar patches.
doi_str_mv 10.1109/34.506791
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_506791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>506791</ieee_id><sourcerecordid>28517055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-17e95fe64b7f18112a9421e2be451ed0e8d96eca7956ffd19b17c7043a133b433</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpDKxMmZAYUnyxHcdjVfElVWKB2XKSczFK4mCnEvx7DKlYWe6Ge3Snewm5BLoCoOqW8ZWgpVRwRBagmMqZYOqYLCiURV5VRXVKzmJ8pxS4oGxB1ushw88Rg-txmEyXNb4fTXDRD5m3WTDDDjPXm1Qj7n7N5NLMdDsf3PTWx3NyYk0X8eLQl-T1_u5l85hvnx-eNutt3jBaTTlIVMJiyWtpoQIojOIFYFEjF4AtxapVJTZGKlFa24KqQTaScmaAsZoztiTX894x-I89xkn3LjbYdWZAv4-6qARIKsT_sEyvp9sJ3sywCT7GgFaPKQYTvjRQ_ZOmZlzPaSZ7NVuHiH_uMPwG1b1u7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26450421</pqid></control><display><type>article</type><title>An experimental comparison of range image segmentation algorithms</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Hoover, A. ; Jean-Baptiste, G. ; Jiang, X. ; Flynn, P.J. ; Bunke, H. ; Goldgof, D.B. ; Bowyer, K. ; Eggert, D.W. ; Fitzgibbon, A. ; Fisher, R.B.</creator><creatorcontrib>Hoover, A. ; Jean-Baptiste, G. ; Jiang, X. ; Flynn, P.J. ; Bunke, H. ; Goldgof, D.B. ; Bowyer, K. ; Eggert, D.W. ; Fitzgibbon, A. ; Fisher, R.B.</creatorcontrib><description>A methodology for evaluating range image segmentation algorithms is proposed. This methodology involves (1) a common set of 40 laser range finder images and 40 structured light scanner images that have manually specified ground truth and (2) a set of defined performance metrics for instances of correctly segmented, missed, and noise regions, over- and under-segmentation, and accuracy of the recovered geometry. A tool is used to objectively compare a machine generated segmentation against the specified ground truth. Four research groups have contributed to evaluate their own algorithm for segmenting a range image into planar patches.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/34.506791</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Computer vision ; Geometrical optics ; Geometry ; Image segmentation ; Laser noise ; Measurement standards ; Pixel ; Shape ; Testing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1996-07, Vol.18 (7), p.673-689</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-17e95fe64b7f18112a9421e2be451ed0e8d96eca7956ffd19b17c7043a133b433</citedby><cites>FETCH-LOGICAL-c308t-17e95fe64b7f18112a9421e2be451ed0e8d96eca7956ffd19b17c7043a133b433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/506791$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/506791$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoover, A.</creatorcontrib><creatorcontrib>Jean-Baptiste, G.</creatorcontrib><creatorcontrib>Jiang, X.</creatorcontrib><creatorcontrib>Flynn, P.J.</creatorcontrib><creatorcontrib>Bunke, H.</creatorcontrib><creatorcontrib>Goldgof, D.B.</creatorcontrib><creatorcontrib>Bowyer, K.</creatorcontrib><creatorcontrib>Eggert, D.W.</creatorcontrib><creatorcontrib>Fitzgibbon, A.</creatorcontrib><creatorcontrib>Fisher, R.B.</creatorcontrib><title>An experimental comparison of range image segmentation algorithms</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A methodology for evaluating range image segmentation algorithms is proposed. This methodology involves (1) a common set of 40 laser range finder images and 40 structured light scanner images that have manually specified ground truth and (2) a set of defined performance metrics for instances of correctly segmented, missed, and noise regions, over- and under-segmentation, and accuracy of the recovered geometry. A tool is used to objectively compare a machine generated segmentation against the specified ground truth. Four research groups have contributed to evaluate their own algorithm for segmenting a range image into planar patches.</description><subject>Artificial intelligence</subject><subject>Computer vision</subject><subject>Geometrical optics</subject><subject>Geometry</subject><subject>Image segmentation</subject><subject>Laser noise</subject><subject>Measurement standards</subject><subject>Pixel</subject><subject>Shape</subject><subject>Testing</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgUQpDKxMmZAYUnyxHcdjVfElVWKB2XKSczFK4mCnEvx7DKlYWe6Ge3Snewm5BLoCoOqW8ZWgpVRwRBagmMqZYOqYLCiURV5VRXVKzmJ8pxS4oGxB1ushw88Rg-txmEyXNb4fTXDRD5m3WTDDDjPXm1Qj7n7N5NLMdDsf3PTWx3NyYk0X8eLQl-T1_u5l85hvnx-eNutt3jBaTTlIVMJiyWtpoQIojOIFYFEjF4AtxapVJTZGKlFa24KqQTaScmaAsZoztiTX894x-I89xkn3LjbYdWZAv4-6qARIKsT_sEyvp9sJ3sywCT7GgFaPKQYTvjRQ_ZOmZlzPaSZ7NVuHiH_uMPwG1b1u7A</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>Hoover, A.</creator><creator>Jean-Baptiste, G.</creator><creator>Jiang, X.</creator><creator>Flynn, P.J.</creator><creator>Bunke, H.</creator><creator>Goldgof, D.B.</creator><creator>Bowyer, K.</creator><creator>Eggert, D.W.</creator><creator>Fitzgibbon, A.</creator><creator>Fisher, R.B.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960701</creationdate><title>An experimental comparison of range image segmentation algorithms</title><author>Hoover, A. ; Jean-Baptiste, G. ; Jiang, X. ; Flynn, P.J. ; Bunke, H. ; Goldgof, D.B. ; Bowyer, K. ; Eggert, D.W. ; Fitzgibbon, A. ; Fisher, R.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-17e95fe64b7f18112a9421e2be451ed0e8d96eca7956ffd19b17c7043a133b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial intelligence</topic><topic>Computer vision</topic><topic>Geometrical optics</topic><topic>Geometry</topic><topic>Image segmentation</topic><topic>Laser noise</topic><topic>Measurement standards</topic><topic>Pixel</topic><topic>Shape</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoover, A.</creatorcontrib><creatorcontrib>Jean-Baptiste, G.</creatorcontrib><creatorcontrib>Jiang, X.</creatorcontrib><creatorcontrib>Flynn, P.J.</creatorcontrib><creatorcontrib>Bunke, H.</creatorcontrib><creatorcontrib>Goldgof, D.B.</creatorcontrib><creatorcontrib>Bowyer, K.</creatorcontrib><creatorcontrib>Eggert, D.W.</creatorcontrib><creatorcontrib>Fitzgibbon, A.</creatorcontrib><creatorcontrib>Fisher, R.B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoover, A.</au><au>Jean-Baptiste, G.</au><au>Jiang, X.</au><au>Flynn, P.J.</au><au>Bunke, H.</au><au>Goldgof, D.B.</au><au>Bowyer, K.</au><au>Eggert, D.W.</au><au>Fitzgibbon, A.</au><au>Fisher, R.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental comparison of range image segmentation algorithms</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1996-07-01</date><risdate>1996</risdate><volume>18</volume><issue>7</issue><spage>673</spage><epage>689</epage><pages>673-689</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>A methodology for evaluating range image segmentation algorithms is proposed. This methodology involves (1) a common set of 40 laser range finder images and 40 structured light scanner images that have manually specified ground truth and (2) a set of defined performance metrics for instances of correctly segmented, missed, and noise regions, over- and under-segmentation, and accuracy of the recovered geometry. A tool is used to objectively compare a machine generated segmentation against the specified ground truth. Four research groups have contributed to evaluate their own algorithm for segmenting a range image into planar patches.</abstract><pub>IEEE</pub><doi>10.1109/34.506791</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1996-07, Vol.18 (7), p.673-689
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_506791
source IEEE/IET Electronic Library (IEL)
subjects Artificial intelligence
Computer vision
Geometrical optics
Geometry
Image segmentation
Laser noise
Measurement standards
Pixel
Shape
Testing
title An experimental comparison of range image segmentation algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20comparison%20of%20range%20image%20segmentation%20algorithms&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Hoover,%20A.&rft.date=1996-07-01&rft.volume=18&rft.issue=7&rft.spage=673&rft.epage=689&rft.pages=673-689&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.506791&rft_dat=%3Cproquest_RIE%3E28517055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26450421&rft_id=info:pmid/&rft_ieee_id=506791&rfr_iscdi=true