Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy
A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, re...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | |
container_start_page | 171 |
container_title | |
container_volume | |
creator | Tamayo, J.M. Heldring, A. Rius, J.M. |
description | A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, representing perfectly the far field of the subdomain and yielding compression for well-separated blocks. Although the construction of the matrix is not computationally efficient compared with other matrix compression methods, it is still quite interesting from a theoretical point of view. Furthermore, it clearly explains certain characteristics of some of those methods, particularly the errors in the solution of those based in pseudoglobal functions. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5067599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5067599</ieee_id><sourcerecordid>5067599</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-87b9d4a1633a6f3f956a456746d4be5ed9d5202bced809e1fbf4358e9a64f2943</originalsourceid><addsrcrecordid>eNotjstqwzAURFXaQtPUX9CNfsAgS1eStSyhL0jIJpuuwpUsNSq2FSSbNn9fQ7saznAY5opURreCMcZBasGvyX0DHAC0FHBDVrxRUAsB_I5UpXwtXmOU5oyvyMcmDefsS4lppCnQ6eTpLu3ogFOOP3QucfxcwOVkscRCwzy6aXEL_Y7TieJS9H3t0jjl1KPtPUXn5ozu8kBuA_bFV_-5JoeX58Pmrd7uX983T9s6GjbVrbamA2yUEKiCCEYqBKk0qA6sl74znVyOWue7lhnfBBtAyNYbVBC4AbEmj3-z0Xt_POc4YL4cJVNaGiN-Abl_UGI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tamayo, J.M. ; Heldring, A. ; Rius, J.M.</creator><creatorcontrib>Tamayo, J.M. ; Heldring, A. ; Rius, J.M.</creatorcontrib><description>A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, representing perfectly the far field of the subdomain and yielding compression for well-separated blocks. Although the construction of the matrix is not computationally efficient compared with other matrix compression methods, it is still quite interesting from a theoretical point of view. Furthermore, it clearly explains certain characteristics of some of those methods, particularly the errors in the solution of those based in pseudoglobal functions.</description><identifier>ISSN: 2164-3342</identifier><identifier>ISBN: 1424447534</identifier><identifier>ISBN: 9781424447534</identifier><identifier>EISBN: 9783000245732</identifier><identifier>EISBN: 3000245731</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Electromagnetic radiation ; Electromagnetic scattering ; Impedance ; Iterative algorithms ; Linear systems ; Matrix decomposition ; Moment methods ; Switches ; Virtual manufacturing</subject><ispartof>2009 3rd European Conference on Antennas and Propagation, 2009, p.171-175</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5067599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,54921</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5067599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tamayo, J.M.</creatorcontrib><creatorcontrib>Heldring, A.</creatorcontrib><creatorcontrib>Rius, J.M.</creatorcontrib><title>Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy</title><title>2009 3rd European Conference on Antennas and Propagation</title><addtitle>EUCAP</addtitle><description>A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, representing perfectly the far field of the subdomain and yielding compression for well-separated blocks. Although the construction of the matrix is not computationally efficient compared with other matrix compression methods, it is still quite interesting from a theoretical point of view. Furthermore, it clearly explains certain characteristics of some of those methods, particularly the errors in the solution of those based in pseudoglobal functions.</description><subject>Acceleration</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic scattering</subject><subject>Impedance</subject><subject>Iterative algorithms</subject><subject>Linear systems</subject><subject>Matrix decomposition</subject><subject>Moment methods</subject><subject>Switches</subject><subject>Virtual manufacturing</subject><issn>2164-3342</issn><isbn>1424447534</isbn><isbn>9781424447534</isbn><isbn>9783000245732</isbn><isbn>3000245731</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstqwzAURFXaQtPUX9CNfsAgS1eStSyhL0jIJpuuwpUsNSq2FSSbNn9fQ7saznAY5opURreCMcZBasGvyX0DHAC0FHBDVrxRUAsB_I5UpXwtXmOU5oyvyMcmDefsS4lppCnQ6eTpLu3ogFOOP3QucfxcwOVkscRCwzy6aXEL_Y7TieJS9H3t0jjl1KPtPUXn5ozu8kBuA_bFV_-5JoeX58Pmrd7uX983T9s6GjbVrbamA2yUEKiCCEYqBKk0qA6sl74znVyOWue7lhnfBBtAyNYbVBC4AbEmj3-z0Xt_POc4YL4cJVNaGiN-Abl_UGI</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Tamayo, J.M.</creator><creator>Heldring, A.</creator><creator>Rius, J.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy</title><author>Tamayo, J.M. ; Heldring, A. ; Rius, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-87b9d4a1633a6f3f956a456746d4be5ed9d5202bced809e1fbf4358e9a64f2943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic scattering</topic><topic>Impedance</topic><topic>Iterative algorithms</topic><topic>Linear systems</topic><topic>Matrix decomposition</topic><topic>Moment methods</topic><topic>Switches</topic><topic>Virtual manufacturing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tamayo, J.M.</creatorcontrib><creatorcontrib>Heldring, A.</creatorcontrib><creatorcontrib>Rius, J.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tamayo, J.M.</au><au>Heldring, A.</au><au>Rius, J.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy</atitle><btitle>2009 3rd European Conference on Antennas and Propagation</btitle><stitle>EUCAP</stitle><date>2009-03</date><risdate>2009</risdate><spage>171</spage><epage>175</epage><pages>171-175</pages><issn>2164-3342</issn><isbn>1424447534</isbn><isbn>9781424447534</isbn><eisbn>9783000245732</eisbn><eisbn>3000245731</eisbn><abstract>A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, representing perfectly the far field of the subdomain and yielding compression for well-separated blocks. Although the construction of the matrix is not computationally efficient compared with other matrix compression methods, it is still quite interesting from a theoretical point of view. Furthermore, it clearly explains certain characteristics of some of those methods, particularly the errors in the solution of those based in pseudoglobal functions.</abstract><pub>IEEE</pub><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-3342 |
ispartof | 2009 3rd European Conference on Antennas and Propagation, 2009, p.171-175 |
issn | 2164-3342 |
language | eng |
recordid | cdi_ieee_primary_5067599 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Electromagnetic radiation Electromagnetic scattering Impedance Iterative algorithms Linear systems Matrix decomposition Moment methods Switches Virtual manufacturing |
title | Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Compression%20of%20the%20MoM%20matrix%20using%20macrobasis%20functions%20with%20a%20full-controlable%20accuracy&rft.btitle=2009%203rd%20European%20Conference%20on%20Antennas%20and%20Propagation&rft.au=Tamayo,%20J.M.&rft.date=2009-03&rft.spage=171&rft.epage=175&rft.pages=171-175&rft.issn=2164-3342&rft.isbn=1424447534&rft.isbn_list=9781424447534&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5067599%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783000245732&rft.eisbn_list=3000245731&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5067599&rfr_iscdi=true |