Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy

A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tamayo, J.M., Heldring, A., Rius, J.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue
container_start_page 171
container_title
container_volume
creator Tamayo, J.M.
Heldring, A.
Rius, J.M.
description A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, representing perfectly the far field of the subdomain and yielding compression for well-separated blocks. Although the construction of the matrix is not computationally efficient compared with other matrix compression methods, it is still quite interesting from a theoretical point of view. Furthermore, it clearly explains certain characteristics of some of those methods, particularly the errors in the solution of those based in pseudoglobal functions.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5067599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5067599</ieee_id><sourcerecordid>5067599</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-87b9d4a1633a6f3f956a456746d4be5ed9d5202bced809e1fbf4358e9a64f2943</originalsourceid><addsrcrecordid>eNotjstqwzAURFXaQtPUX9CNfsAgS1eStSyhL0jIJpuuwpUsNSq2FSSbNn9fQ7saznAY5opURreCMcZBasGvyX0DHAC0FHBDVrxRUAsB_I5UpXwtXmOU5oyvyMcmDefsS4lppCnQ6eTpLu3ogFOOP3QucfxcwOVkscRCwzy6aXEL_Y7TieJS9H3t0jjl1KPtPUXn5ozu8kBuA_bFV_-5JoeX58Pmrd7uX983T9s6GjbVrbamA2yUEKiCCEYqBKk0qA6sl74znVyOWue7lhnfBBtAyNYbVBC4AbEmj3-z0Xt_POc4YL4cJVNaGiN-Abl_UGI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tamayo, J.M. ; Heldring, A. ; Rius, J.M.</creator><creatorcontrib>Tamayo, J.M. ; Heldring, A. ; Rius, J.M.</creatorcontrib><description>A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, representing perfectly the far field of the subdomain and yielding compression for well-separated blocks. Although the construction of the matrix is not computationally efficient compared with other matrix compression methods, it is still quite interesting from a theoretical point of view. Furthermore, it clearly explains certain characteristics of some of those methods, particularly the errors in the solution of those based in pseudoglobal functions.</description><identifier>ISSN: 2164-3342</identifier><identifier>ISBN: 1424447534</identifier><identifier>ISBN: 9781424447534</identifier><identifier>EISBN: 9783000245732</identifier><identifier>EISBN: 3000245731</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Electromagnetic radiation ; Electromagnetic scattering ; Impedance ; Iterative algorithms ; Linear systems ; Matrix decomposition ; Moment methods ; Switches ; Virtual manufacturing</subject><ispartof>2009 3rd European Conference on Antennas and Propagation, 2009, p.171-175</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5067599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,54921</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5067599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tamayo, J.M.</creatorcontrib><creatorcontrib>Heldring, A.</creatorcontrib><creatorcontrib>Rius, J.M.</creatorcontrib><title>Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy</title><title>2009 3rd European Conference on Antennas and Propagation</title><addtitle>EUCAP</addtitle><description>A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, representing perfectly the far field of the subdomain and yielding compression for well-separated blocks. Although the construction of the matrix is not computationally efficient compared with other matrix compression methods, it is still quite interesting from a theoretical point of view. Furthermore, it clearly explains certain characteristics of some of those methods, particularly the errors in the solution of those based in pseudoglobal functions.</description><subject>Acceleration</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic scattering</subject><subject>Impedance</subject><subject>Iterative algorithms</subject><subject>Linear systems</subject><subject>Matrix decomposition</subject><subject>Moment methods</subject><subject>Switches</subject><subject>Virtual manufacturing</subject><issn>2164-3342</issn><isbn>1424447534</isbn><isbn>9781424447534</isbn><isbn>9783000245732</isbn><isbn>3000245731</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjstqwzAURFXaQtPUX9CNfsAgS1eStSyhL0jIJpuuwpUsNSq2FSSbNn9fQ7saznAY5opURreCMcZBasGvyX0DHAC0FHBDVrxRUAsB_I5UpXwtXmOU5oyvyMcmDefsS4lppCnQ6eTpLu3ogFOOP3QucfxcwOVkscRCwzy6aXEL_Y7TieJS9H3t0jjl1KPtPUXn5ozu8kBuA_bFV_-5JoeX58Pmrd7uX983T9s6GjbVrbamA2yUEKiCCEYqBKk0qA6sl74znVyOWue7lhnfBBtAyNYbVBC4AbEmj3-z0Xt_POc4YL4cJVNaGiN-Abl_UGI</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Tamayo, J.M.</creator><creator>Heldring, A.</creator><creator>Rius, J.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy</title><author>Tamayo, J.M. ; Heldring, A. ; Rius, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-87b9d4a1633a6f3f956a456746d4be5ed9d5202bced809e1fbf4358e9a64f2943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acceleration</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic scattering</topic><topic>Impedance</topic><topic>Iterative algorithms</topic><topic>Linear systems</topic><topic>Matrix decomposition</topic><topic>Moment methods</topic><topic>Switches</topic><topic>Virtual manufacturing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tamayo, J.M.</creatorcontrib><creatorcontrib>Heldring, A.</creatorcontrib><creatorcontrib>Rius, J.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tamayo, J.M.</au><au>Heldring, A.</au><au>Rius, J.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy</atitle><btitle>2009 3rd European Conference on Antennas and Propagation</btitle><stitle>EUCAP</stitle><date>2009-03</date><risdate>2009</risdate><spage>171</spage><epage>175</epage><pages>171-175</pages><issn>2164-3342</issn><isbn>1424447534</isbn><isbn>9781424447534</isbn><eisbn>9783000245732</eisbn><eisbn>3000245731</eisbn><abstract>A new accuracy-controlable method for compressing the MoM impedance matrix of an electromagnetic problem based on a basis change plus a truncation with a threshold is presented here. The idea is to switch to singular basis functions, which are defined on relatively large subdomains of the object, representing perfectly the far field of the subdomain and yielding compression for well-separated blocks. Although the construction of the matrix is not computationally efficient compared with other matrix compression methods, it is still quite interesting from a theoretical point of view. Furthermore, it clearly explains certain characteristics of some of those methods, particularly the errors in the solution of those based in pseudoglobal functions.</abstract><pub>IEEE</pub><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-3342
ispartof 2009 3rd European Conference on Antennas and Propagation, 2009, p.171-175
issn 2164-3342
language eng
recordid cdi_ieee_primary_5067599
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Electromagnetic radiation
Electromagnetic scattering
Impedance
Iterative algorithms
Linear systems
Matrix decomposition
Moment methods
Switches
Virtual manufacturing
title Compression of the MoM matrix using macrobasis functions with a full-controlable accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Compression%20of%20the%20MoM%20matrix%20using%20macrobasis%20functions%20with%20a%20full-controlable%20accuracy&rft.btitle=2009%203rd%20European%20Conference%20on%20Antennas%20and%20Propagation&rft.au=Tamayo,%20J.M.&rft.date=2009-03&rft.spage=171&rft.epage=175&rft.pages=171-175&rft.issn=2164-3342&rft.isbn=1424447534&rft.isbn_list=9781424447534&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5067599%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783000245732&rft.eisbn_list=3000245731&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5067599&rfr_iscdi=true