Increasing Voltage Utilization in Split-Link, Four-Wire Inverters

Three-phase four-wire inverters, with either three-leg or four-leg topology, are useful for interfacing distributed generation to networks of unbalanced loads, but neither of the available circuit topologies is ideal. The split-link three-leg topology (with six switches) suffers from poor DC voltage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2009-06, Vol.24 (6), p.1562-1569
Hauptverfasser: Jun Liang, Green, T.C., Chunmei Feng, Weiss, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-phase four-wire inverters, with either three-leg or four-leg topology, are useful for interfacing distributed generation to networks of unbalanced loads, but neither of the available circuit topologies is ideal. The split-link three-leg topology (with six switches) suffers from poor DC voltage utilization compared with the four-leg topology (with eight switches). The four-leg topology has an electromagnetic compatibility (EMC) difficulty because it imposes large-amplitude high-frequency voltages between the DC-link busbars and ground. To obtain both good dc voltage utilization and good EMC performance, it is proposed to use a split-link inverter with an active balancing circuit (also eight switches). The balancing circuit is used to modulate the DC busbar offset voltage to make better use of the available DC-link voltage. The optimum voltage term is established to be a third harmonic term, and the DC voltage utilization is improved. A deadbeat controller supplemented with a repetitive controller is designed to give good tracking and good disturbance rejection for the busbar offset voltage. System performance is studied through an experimental test rig.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2009.2013351