Skill acquisition from human demonstration using a hidden Markov model
A new approach to skill acquisition in assembly is proposed. An assembly skill is represented by a hybrid dynamic system where a discrete event controller models the skill at the task level. The output of the discrete event controller provides the reference commands for the underlying robot controll...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2711 vol.3 |
---|---|
container_issue | |
container_start_page | 2706 |
container_title | |
container_volume | 3 |
creator | Hovland, G.E. Sikka, P. McCarragher, B.J. |
description | A new approach to skill acquisition in assembly is proposed. An assembly skill is represented by a hybrid dynamic system where a discrete event controller models the skill at the task level. The output of the discrete event controller provides the reference commands for the underlying robot controller. This structure is naturally encoded by a hidden Markov model (HMM). The HMM parameters are obtained by training on sensory data from human demonstrations of the skill. Currently, assembly tasks have to be performed by human operators or by robots using expensive fixtures. Our approach transfers the assembly skill from an expert human operator to the robot, thus making it possible for a robot to perform assembly tasks without the use of expensive fixtures. |
doi_str_mv | 10.1109/ROBOT.1996.506571 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_506571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>506571</ieee_id><sourcerecordid>15727903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i269t-b0e301444d2ccd53b9f5e8aabade0641096756641c5448e8f0c6b001015c53fc3</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMfYFv9AXrKydvWN5vvo5ZWhUpBK3hbsknWxu5u2s2u4L-3WE8zMMPAMwhdE5gSAvrudfWwWk-J1mLKQXBJTtAo51JmoOTHKRqDVEBzrRScoREBDhmTub5A45S-AIBSIUZo8bYNdY2N3Q8hhT7EFlddbPBmaEyLnW9im_rO_AVDCu0nNngTnPMtfjHdNn7jJjpfX6LzytTJX_3rBL0v5uvZU7ZcPT7P7pdZyIXusxI8BcIYc7m1jtNSV9wrY0rjPAh2oBKSi4OxnDHlVQVWlAAECLecVpZO0O1xd9fF_eBTXzQhWV_XpvVxSAXhMpf6wDZBN8di8N4Xuy40pvspjj_RXzV2Wm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>15727903</pqid></control><display><type>conference_proceeding</type><title>Skill acquisition from human demonstration using a hidden Markov model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hovland, G.E. ; Sikka, P. ; McCarragher, B.J.</creator><creatorcontrib>Hovland, G.E. ; Sikka, P. ; McCarragher, B.J.</creatorcontrib><description>A new approach to skill acquisition in assembly is proposed. An assembly skill is represented by a hybrid dynamic system where a discrete event controller models the skill at the task level. The output of the discrete event controller provides the reference commands for the underlying robot controller. This structure is naturally encoded by a hidden Markov model (HMM). The HMM parameters are obtained by training on sensory data from human demonstrations of the skill. Currently, assembly tasks have to be performed by human operators or by robots using expensive fixtures. Our approach transfers the assembly skill from an expert human operator to the robot, thus making it possible for a robot to perform assembly tasks without the use of expensive fixtures.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 0780329880</identifier><identifier>ISBN: 9780780329881</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.1996.506571</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assembly systems ; Fixtures ; Hidden Markov models ; Humans ; Monitoring ; Process control ; Robot control ; Robot sensing systems ; Robotic assembly ; Uncertainty</subject><ispartof>Proceedings - IEEE International Conference on Robotics and Automation, 1996, Vol.3, p.2706-2711 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/506571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,25140,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/506571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hovland, G.E.</creatorcontrib><creatorcontrib>Sikka, P.</creatorcontrib><creatorcontrib>McCarragher, B.J.</creatorcontrib><title>Skill acquisition from human demonstration using a hidden Markov model</title><title>Proceedings - IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>A new approach to skill acquisition in assembly is proposed. An assembly skill is represented by a hybrid dynamic system where a discrete event controller models the skill at the task level. The output of the discrete event controller provides the reference commands for the underlying robot controller. This structure is naturally encoded by a hidden Markov model (HMM). The HMM parameters are obtained by training on sensory data from human demonstrations of the skill. Currently, assembly tasks have to be performed by human operators or by robots using expensive fixtures. Our approach transfers the assembly skill from an expert human operator to the robot, thus making it possible for a robot to perform assembly tasks without the use of expensive fixtures.</description><subject>Assembly systems</subject><subject>Fixtures</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Monitoring</subject><subject>Process control</subject><subject>Robot control</subject><subject>Robot sensing systems</subject><subject>Robotic assembly</subject><subject>Uncertainty</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>0780329880</isbn><isbn>9780780329881</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1LAzEYhIMfYFv9AXrKydvWN5vvo5ZWhUpBK3hbsknWxu5u2s2u4L-3WE8zMMPAMwhdE5gSAvrudfWwWk-J1mLKQXBJTtAo51JmoOTHKRqDVEBzrRScoREBDhmTub5A45S-AIBSIUZo8bYNdY2N3Q8hhT7EFlddbPBmaEyLnW9im_rO_AVDCu0nNngTnPMtfjHdNn7jJjpfX6LzytTJX_3rBL0v5uvZU7ZcPT7P7pdZyIXusxI8BcIYc7m1jtNSV9wrY0rjPAh2oBKSi4OxnDHlVQVWlAAECLecVpZO0O1xd9fF_eBTXzQhWV_XpvVxSAXhMpf6wDZBN8di8N4Xuy40pvspjj_RXzV2Wm4</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Hovland, G.E.</creator><creator>Sikka, P.</creator><creator>McCarragher, B.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>1996</creationdate><title>Skill acquisition from human demonstration using a hidden Markov model</title><author>Hovland, G.E. ; Sikka, P. ; McCarragher, B.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i269t-b0e301444d2ccd53b9f5e8aabade0641096756641c5448e8f0c6b001015c53fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Assembly systems</topic><topic>Fixtures</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Monitoring</topic><topic>Process control</topic><topic>Robot control</topic><topic>Robot sensing systems</topic><topic>Robotic assembly</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Hovland, G.E.</creatorcontrib><creatorcontrib>Sikka, P.</creatorcontrib><creatorcontrib>McCarragher, B.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hovland, G.E.</au><au>Sikka, P.</au><au>McCarragher, B.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Skill acquisition from human demonstration using a hidden Markov model</atitle><btitle>Proceedings - IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>1996</date><risdate>1996</risdate><volume>3</volume><spage>2706</spage><epage>2711 vol.3</epage><pages>2706-2711 vol.3</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>0780329880</isbn><isbn>9780780329881</isbn><abstract>A new approach to skill acquisition in assembly is proposed. An assembly skill is represented by a hybrid dynamic system where a discrete event controller models the skill at the task level. The output of the discrete event controller provides the reference commands for the underlying robot controller. This structure is naturally encoded by a hidden Markov model (HMM). The HMM parameters are obtained by training on sensory data from human demonstrations of the skill. Currently, assembly tasks have to be performed by human operators or by robots using expensive fixtures. Our approach transfers the assembly skill from an expert human operator to the robot, thus making it possible for a robot to perform assembly tasks without the use of expensive fixtures.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.1996.506571</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings - IEEE International Conference on Robotics and Automation, 1996, Vol.3, p.2706-2711 vol.3 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_506571 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Assembly systems Fixtures Hidden Markov models Humans Monitoring Process control Robot control Robot sensing systems Robotic assembly Uncertainty |
title | Skill acquisition from human demonstration using a hidden Markov model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Skill%20acquisition%20from%20human%20demonstration%20using%20a%20hidden%20Markov%20model&rft.btitle=Proceedings%20-%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Hovland,%20G.E.&rft.date=1996&rft.volume=3&rft.spage=2706&rft.epage=2711%20vol.3&rft.pages=2706-2711%20vol.3&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=0780329880&rft.isbn_list=9780780329881&rft_id=info:doi/10.1109/ROBOT.1996.506571&rft_dat=%3Cproquest_6IE%3E15727903%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15727903&rft_id=info:pmid/&rft_ieee_id=506571&rfr_iscdi=true |