Framework for a general purpose, intelligent control system for particle accelerators

Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Westervelt, R.T., Klein, W.B., Luger, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2177 vol.4
container_issue
container_start_page 2175
container_title
container_volume 4
creator Westervelt, R.T.
Klein, W.B.
Luger, G.
description Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to the problem, with isolated success. Few, if any, of these advanced information technologies have been applied for general use or in a manner useful to multiple accelerator installations. We discuss results of coupling neural network and expert systems technology to solve several standard accelerator tuning problems based on realistic simulations. We also examine the effectiveness of additional heuristic search techniques such as genetic algorithms. Finally, we show the integration of this hybrid AI system with an existing general-purpose control system.
doi_str_mv 10.1109/PAC.1995.505489
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_505489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>505489</ieee_id><sourcerecordid>505489</sourcerecordid><originalsourceid>FETCH-ieee_primary_5054893</originalsourceid><addsrcrecordid>eNp9jrEKwjAYhAMiKNpZcMoDaE1Mq80oxeLooHMJ4a9E0yb8iUjf3qLOHgcHd3xwhCw4SzlncnM-lCmXMk9zlmeFHJFE7gs2WGylyIoJSUK4s0GZkHwnp-RaoWrh5fBBG4dU0Rt0gMpS_0TvAqyo6SJYa4Y-Uu26iM7S0IcI7YfwCqPRFqjSGuyARodhTsaNsgGSX87IsjpeytPaAEDt0bQK-_r7Ufwd3zn5QT4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Framework for a general purpose, intelligent control system for particle accelerators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Westervelt, R.T. ; Klein, W.B. ; Luger, G.</creator><creatorcontrib>Westervelt, R.T. ; Klein, W.B. ; Luger, G.</creatorcontrib><description>Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to the problem, with isolated success. Few, if any, of these advanced information technologies have been applied for general use or in a manner useful to multiple accelerator installations. We discuss results of coupling neural network and expert systems technology to solve several standard accelerator tuning problems based on realistic simulations. We also examine the effectiveness of additional heuristic search techniques such as genetic algorithms. Finally, we show the integration of this hybrid AI system with an existing general-purpose control system.</description><identifier>ISBN: 9780780329348</identifier><identifier>ISBN: 0780329341</identifier><identifier>DOI: 10.1109/PAC.1995.505489</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Control systems ; Expert systems ; Information technology ; Intelligent control ; Linear particle accelerator ; Magnets ; Neural networks ; Particle accelerators</subject><ispartof>Proceedings Particle Accelerator Conference, 1995, Vol.4, p.2175-2177 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/505489$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/505489$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Westervelt, R.T.</creatorcontrib><creatorcontrib>Klein, W.B.</creatorcontrib><creatorcontrib>Luger, G.</creatorcontrib><title>Framework for a general purpose, intelligent control system for particle accelerators</title><title>Proceedings Particle Accelerator Conference</title><addtitle>PAC</addtitle><description>Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to the problem, with isolated success. Few, if any, of these advanced information technologies have been applied for general use or in a manner useful to multiple accelerator installations. We discuss results of coupling neural network and expert systems technology to solve several standard accelerator tuning problems based on realistic simulations. We also examine the effectiveness of additional heuristic search techniques such as genetic algorithms. Finally, we show the integration of this hybrid AI system with an existing general-purpose control system.</description><subject>Automatic control</subject><subject>Control systems</subject><subject>Expert systems</subject><subject>Information technology</subject><subject>Intelligent control</subject><subject>Linear particle accelerator</subject><subject>Magnets</subject><subject>Neural networks</subject><subject>Particle accelerators</subject><isbn>9780780329348</isbn><isbn>0780329341</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrEKwjAYhAMiKNpZcMoDaE1Mq80oxeLooHMJ4a9E0yb8iUjf3qLOHgcHd3xwhCw4SzlncnM-lCmXMk9zlmeFHJFE7gs2WGylyIoJSUK4s0GZkHwnp-RaoWrh5fBBG4dU0Rt0gMpS_0TvAqyo6SJYa4Y-Uu26iM7S0IcI7YfwCqPRFqjSGuyARodhTsaNsgGSX87IsjpeytPaAEDt0bQK-_r7Ufwd3zn5QT4</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Westervelt, R.T.</creator><creator>Klein, W.B.</creator><creator>Luger, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Framework for a general purpose, intelligent control system for particle accelerators</title><author>Westervelt, R.T. ; Klein, W.B. ; Luger, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5054893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Automatic control</topic><topic>Control systems</topic><topic>Expert systems</topic><topic>Information technology</topic><topic>Intelligent control</topic><topic>Linear particle accelerator</topic><topic>Magnets</topic><topic>Neural networks</topic><topic>Particle accelerators</topic><toplevel>online_resources</toplevel><creatorcontrib>Westervelt, R.T.</creatorcontrib><creatorcontrib>Klein, W.B.</creatorcontrib><creatorcontrib>Luger, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Westervelt, R.T.</au><au>Klein, W.B.</au><au>Luger, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Framework for a general purpose, intelligent control system for particle accelerators</atitle><btitle>Proceedings Particle Accelerator Conference</btitle><stitle>PAC</stitle><date>1995</date><risdate>1995</risdate><volume>4</volume><spage>2175</spage><epage>2177 vol.4</epage><pages>2175-2177 vol.4</pages><isbn>9780780329348</isbn><isbn>0780329341</isbn><abstract>Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to the problem, with isolated success. Few, if any, of these advanced information technologies have been applied for general use or in a manner useful to multiple accelerator installations. We discuss results of coupling neural network and expert systems technology to solve several standard accelerator tuning problems based on realistic simulations. We also examine the effectiveness of additional heuristic search techniques such as genetic algorithms. Finally, we show the integration of this hybrid AI system with an existing general-purpose control system.</abstract><pub>IEEE</pub><doi>10.1109/PAC.1995.505489</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780329348
ispartof Proceedings Particle Accelerator Conference, 1995, Vol.4, p.2175-2177 vol.4
issn
language eng
recordid cdi_ieee_primary_505489
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Control systems
Expert systems
Information technology
Intelligent control
Linear particle accelerator
Magnets
Neural networks
Particle accelerators
title Framework for a general purpose, intelligent control system for particle accelerators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Framework%20for%20a%20general%20purpose,%20intelligent%20control%20system%20for%20particle%20accelerators&rft.btitle=Proceedings%20Particle%20Accelerator%20Conference&rft.au=Westervelt,%20R.T.&rft.date=1995&rft.volume=4&rft.spage=2175&rft.epage=2177%20vol.4&rft.pages=2175-2177%20vol.4&rft.isbn=9780780329348&rft.isbn_list=0780329341&rft_id=info:doi/10.1109/PAC.1995.505489&rft_dat=%3Cieee_6IE%3E505489%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=505489&rfr_iscdi=true