Framework for a general purpose, intelligent control system for particle accelerators
Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2177 vol.4 |
---|---|
container_issue | |
container_start_page | 2175 |
container_title | |
container_volume | 4 |
creator | Westervelt, R.T. Klein, W.B. Luger, G. |
description | Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to the problem, with isolated success. Few, if any, of these advanced information technologies have been applied for general use or in a manner useful to multiple accelerator installations. We discuss results of coupling neural network and expert systems technology to solve several standard accelerator tuning problems based on realistic simulations. We also examine the effectiveness of additional heuristic search techniques such as genetic algorithms. Finally, we show the integration of this hybrid AI system with an existing general-purpose control system. |
doi_str_mv | 10.1109/PAC.1995.505489 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_505489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>505489</ieee_id><sourcerecordid>505489</sourcerecordid><originalsourceid>FETCH-ieee_primary_5054893</originalsourceid><addsrcrecordid>eNp9jrEKwjAYhAMiKNpZcMoDaE1Mq80oxeLooHMJ4a9E0yb8iUjf3qLOHgcHd3xwhCw4SzlncnM-lCmXMk9zlmeFHJFE7gs2WGylyIoJSUK4s0GZkHwnp-RaoWrh5fBBG4dU0Rt0gMpS_0TvAqyo6SJYa4Y-Uu26iM7S0IcI7YfwCqPRFqjSGuyARodhTsaNsgGSX87IsjpeytPaAEDt0bQK-_r7Ufwd3zn5QT4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Framework for a general purpose, intelligent control system for particle accelerators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Westervelt, R.T. ; Klein, W.B. ; Luger, G.</creator><creatorcontrib>Westervelt, R.T. ; Klein, W.B. ; Luger, G.</creatorcontrib><description>Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to the problem, with isolated success. Few, if any, of these advanced information technologies have been applied for general use or in a manner useful to multiple accelerator installations. We discuss results of coupling neural network and expert systems technology to solve several standard accelerator tuning problems based on realistic simulations. We also examine the effectiveness of additional heuristic search techniques such as genetic algorithms. Finally, we show the integration of this hybrid AI system with an existing general-purpose control system.</description><identifier>ISBN: 9780780329348</identifier><identifier>ISBN: 0780329341</identifier><identifier>DOI: 10.1109/PAC.1995.505489</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Control systems ; Expert systems ; Information technology ; Intelligent control ; Linear particle accelerator ; Magnets ; Neural networks ; Particle accelerators</subject><ispartof>Proceedings Particle Accelerator Conference, 1995, Vol.4, p.2175-2177 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/505489$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/505489$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Westervelt, R.T.</creatorcontrib><creatorcontrib>Klein, W.B.</creatorcontrib><creatorcontrib>Luger, G.</creatorcontrib><title>Framework for a general purpose, intelligent control system for particle accelerators</title><title>Proceedings Particle Accelerator Conference</title><addtitle>PAC</addtitle><description>Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to the problem, with isolated success. Few, if any, of these advanced information technologies have been applied for general use or in a manner useful to multiple accelerator installations. We discuss results of coupling neural network and expert systems technology to solve several standard accelerator tuning problems based on realistic simulations. We also examine the effectiveness of additional heuristic search techniques such as genetic algorithms. Finally, we show the integration of this hybrid AI system with an existing general-purpose control system.</description><subject>Automatic control</subject><subject>Control systems</subject><subject>Expert systems</subject><subject>Information technology</subject><subject>Intelligent control</subject><subject>Linear particle accelerator</subject><subject>Magnets</subject><subject>Neural networks</subject><subject>Particle accelerators</subject><isbn>9780780329348</isbn><isbn>0780329341</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrEKwjAYhAMiKNpZcMoDaE1Mq80oxeLooHMJ4a9E0yb8iUjf3qLOHgcHd3xwhCw4SzlncnM-lCmXMk9zlmeFHJFE7gs2WGylyIoJSUK4s0GZkHwnp-RaoWrh5fBBG4dU0Rt0gMpS_0TvAqyo6SJYa4Y-Uu26iM7S0IcI7YfwCqPRFqjSGuyARodhTsaNsgGSX87IsjpeytPaAEDt0bQK-_r7Ufwd3zn5QT4</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Westervelt, R.T.</creator><creator>Klein, W.B.</creator><creator>Luger, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Framework for a general purpose, intelligent control system for particle accelerators</title><author>Westervelt, R.T. ; Klein, W.B. ; Luger, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5054893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Automatic control</topic><topic>Control systems</topic><topic>Expert systems</topic><topic>Information technology</topic><topic>Intelligent control</topic><topic>Linear particle accelerator</topic><topic>Magnets</topic><topic>Neural networks</topic><topic>Particle accelerators</topic><toplevel>online_resources</toplevel><creatorcontrib>Westervelt, R.T.</creatorcontrib><creatorcontrib>Klein, W.B.</creatorcontrib><creatorcontrib>Luger, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Westervelt, R.T.</au><au>Klein, W.B.</au><au>Luger, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Framework for a general purpose, intelligent control system for particle accelerators</atitle><btitle>Proceedings Particle Accelerator Conference</btitle><stitle>PAC</stitle><date>1995</date><risdate>1995</risdate><volume>4</volume><spage>2175</spage><epage>2177 vol.4</epage><pages>2175-2177 vol.4</pages><isbn>9780780329348</isbn><isbn>0780329341</isbn><abstract>Tuning and controlling particle accelerators is time consuming and expensive. Inherently nonlinear, the control problem is one to which conventional methods cannot satisfactorily be applied. Advanced information technologies such as expert systems and neural networks have been applied separately to the problem, with isolated success. Few, if any, of these advanced information technologies have been applied for general use or in a manner useful to multiple accelerator installations. We discuss results of coupling neural network and expert systems technology to solve several standard accelerator tuning problems based on realistic simulations. We also examine the effectiveness of additional heuristic search techniques such as genetic algorithms. Finally, we show the integration of this hybrid AI system with an existing general-purpose control system.</abstract><pub>IEEE</pub><doi>10.1109/PAC.1995.505489</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780329348 |
ispartof | Proceedings Particle Accelerator Conference, 1995, Vol.4, p.2175-2177 vol.4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_505489 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic control Control systems Expert systems Information technology Intelligent control Linear particle accelerator Magnets Neural networks Particle accelerators |
title | Framework for a general purpose, intelligent control system for particle accelerators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Framework%20for%20a%20general%20purpose,%20intelligent%20control%20system%20for%20particle%20accelerators&rft.btitle=Proceedings%20Particle%20Accelerator%20Conference&rft.au=Westervelt,%20R.T.&rft.date=1995&rft.volume=4&rft.spage=2175&rft.epage=2177%20vol.4&rft.pages=2175-2177%20vol.4&rft.isbn=9780780329348&rft.isbn_list=0780329341&rft_id=info:doi/10.1109/PAC.1995.505489&rft_dat=%3Cieee_6IE%3E505489%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=505489&rfr_iscdi=true |