Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements

Finding sparse solutions of under-determined systems of linear equations is a problem of significance importance in signal processing and statistics. In this paper we study an iterative reweighted least squares (IRLS) approach to find sparse solutions of underdetermined system of equations based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carrillo, R.E., Barner, K.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue
container_start_page 448
container_title
container_volume
creator Carrillo, R.E.
Barner, K.E.
description Finding sparse solutions of under-determined systems of linear equations is a problem of significance importance in signal processing and statistics. In this paper we study an iterative reweighted least squares (IRLS) approach to find sparse solutions of underdetermined system of equations based on smooth approximation of the L 0 norm and the method is extended to find sparse solutions from noisy measurements. Analysis of the proposed methods show that weaker conditions on the sensing matrices are required. Simulation results demonstrate that the proposed method requires fewer samples than existing methods, while maintaining a reconstruction error of the same order and demanding less computational complexity.
doi_str_mv 10.1109/CISS.2009.5054762
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5054762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5054762</ieee_id><sourcerecordid>5054762</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-363325741cefe2a71b633526b4b8be7d809a7c80f693dd658c882a651b50a5803</originalsourceid><addsrcrecordid>eNo1UEtLw0AYXJGCtvYHiJf9A4n7fhwlqA0UPFSvlk3ypa7kUXe3Sv69Aetchhlm5jAI3VKSU0rsfVHudjkjxOaSSKEVu0BLKpgQTHOhL9HaavOvuVmg5Zw1lihi2RVax_hJZgjJLOfX6L1MEFzy39BNOED2A_7wkaDBHbiYcPw6uQARt2PA8ehCBBz9YXDdnK3HIaZwqpMfB9yGscfD6OOE-7l5CtDDkOINWrSui7A-8wq9PT2-Fpts-_JcFg_bzFMtU8YV50xqQWtogTlNq9mQTFWiMhXoxhDrdG1IqyxvGiVNbQxzStJKEicN4St097frAWB_DL53Ydqf_-G_IAZYXQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Carrillo, R.E. ; Barner, K.E.</creator><creatorcontrib>Carrillo, R.E. ; Barner, K.E.</creatorcontrib><description>Finding sparse solutions of under-determined systems of linear equations is a problem of significance importance in signal processing and statistics. In this paper we study an iterative reweighted least squares (IRLS) approach to find sparse solutions of underdetermined system of equations based on smooth approximation of the L 0 norm and the method is extended to find sparse solutions from noisy measurements. Analysis of the proposed methods show that weaker conditions on the sensing matrices are required. Simulation results demonstrate that the proposed method requires fewer samples than existing methods, while maintaining a reconstruction error of the same order and demanding less computational complexity.</description><identifier>ISBN: 9781424427338</identifier><identifier>ISBN: 1424427339</identifier><identifier>EISBN: 1424427347</identifier><identifier>EISBN: 9781424427345</identifier><identifier>DOI: 10.1109/CISS.2009.5054762</identifier><identifier>LCCN: 2008906092</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compressed sensing ; Computational complexity ; Computational modeling ; Equations ; Iterative methods ; Least squares approximation ; Least squares methods ; re-weighted least squares ; sampling methods ; Signal processing ; Signal reconstruction ; Sparse matrices ; Statistics ; underdetermined systems of linear equations</subject><ispartof>2009 43rd Annual Conference on Information Sciences and Systems, 2009, p.448-453</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5054762$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5054762$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Carrillo, R.E.</creatorcontrib><creatorcontrib>Barner, K.E.</creatorcontrib><title>Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements</title><title>2009 43rd Annual Conference on Information Sciences and Systems</title><addtitle>CISS</addtitle><description>Finding sparse solutions of under-determined systems of linear equations is a problem of significance importance in signal processing and statistics. In this paper we study an iterative reweighted least squares (IRLS) approach to find sparse solutions of underdetermined system of equations based on smooth approximation of the L 0 norm and the method is extended to find sparse solutions from noisy measurements. Analysis of the proposed methods show that weaker conditions on the sensing matrices are required. Simulation results demonstrate that the proposed method requires fewer samples than existing methods, while maintaining a reconstruction error of the same order and demanding less computational complexity.</description><subject>Compressed sensing</subject><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Equations</subject><subject>Iterative methods</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>re-weighted least squares</subject><subject>sampling methods</subject><subject>Signal processing</subject><subject>Signal reconstruction</subject><subject>Sparse matrices</subject><subject>Statistics</subject><subject>underdetermined systems of linear equations</subject><isbn>9781424427338</isbn><isbn>1424427339</isbn><isbn>1424427347</isbn><isbn>9781424427345</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtLw0AYXJGCtvYHiJf9A4n7fhwlqA0UPFSvlk3ypa7kUXe3Sv69Aetchhlm5jAI3VKSU0rsfVHudjkjxOaSSKEVu0BLKpgQTHOhL9HaavOvuVmg5Zw1lihi2RVax_hJZgjJLOfX6L1MEFzy39BNOED2A_7wkaDBHbiYcPw6uQARt2PA8ehCBBz9YXDdnK3HIaZwqpMfB9yGscfD6OOE-7l5CtDDkOINWrSui7A-8wq9PT2-Fpts-_JcFg_bzFMtU8YV50xqQWtogTlNq9mQTFWiMhXoxhDrdG1IqyxvGiVNbQxzStJKEicN4St097frAWB_DL53Ydqf_-G_IAZYXQ</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Carrillo, R.E.</creator><creator>Barner, K.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements</title><author>Carrillo, R.E. ; Barner, K.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-363325741cefe2a71b633526b4b8be7d809a7c80f693dd658c882a651b50a5803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Compressed sensing</topic><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Equations</topic><topic>Iterative methods</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>re-weighted least squares</topic><topic>sampling methods</topic><topic>Signal processing</topic><topic>Signal reconstruction</topic><topic>Sparse matrices</topic><topic>Statistics</topic><topic>underdetermined systems of linear equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, R.E.</creatorcontrib><creatorcontrib>Barner, K.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carrillo, R.E.</au><au>Barner, K.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements</atitle><btitle>2009 43rd Annual Conference on Information Sciences and Systems</btitle><stitle>CISS</stitle><date>2009-03</date><risdate>2009</risdate><spage>448</spage><epage>453</epage><pages>448-453</pages><isbn>9781424427338</isbn><isbn>1424427339</isbn><eisbn>1424427347</eisbn><eisbn>9781424427345</eisbn><abstract>Finding sparse solutions of under-determined systems of linear equations is a problem of significance importance in signal processing and statistics. In this paper we study an iterative reweighted least squares (IRLS) approach to find sparse solutions of underdetermined system of equations based on smooth approximation of the L 0 norm and the method is extended to find sparse solutions from noisy measurements. Analysis of the proposed methods show that weaker conditions on the sensing matrices are required. Simulation results demonstrate that the proposed method requires fewer samples than existing methods, while maintaining a reconstruction error of the same order and demanding less computational complexity.</abstract><pub>IEEE</pub><doi>10.1109/CISS.2009.5054762</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424427338
ispartof 2009 43rd Annual Conference on Information Sciences and Systems, 2009, p.448-453
issn
language eng
recordid cdi_ieee_primary_5054762
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Compressed sensing
Computational complexity
Computational modeling
Equations
Iterative methods
Least squares approximation
Least squares methods
re-weighted least squares
sampling methods
Signal processing
Signal reconstruction
Sparse matrices
Statistics
underdetermined systems of linear equations
title Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Iteratively%20re-weighted%20least%20squares%20for%20sparse%20signal%20reconstruction%20from%20noisy%20measurements&rft.btitle=2009%2043rd%20Annual%20Conference%20on%20Information%20Sciences%20and%20Systems&rft.au=Carrillo,%20R.E.&rft.date=2009-03&rft.spage=448&rft.epage=453&rft.pages=448-453&rft.isbn=9781424427338&rft.isbn_list=1424427339&rft_id=info:doi/10.1109/CISS.2009.5054762&rft_dat=%3Cieee_6IE%3E5054762%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424427347&rft.eisbn_list=9781424427345&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5054762&rfr_iscdi=true