Analysis of SSR using artificial neural networks [power system simulation]

Artificial neural networks (ANNs) are being advantageously applied to power system analysis problems. They possess the ability to establish complicated input-output mappings through a learning process, without any explicit programming. In this paper, an ANN based method for subsynchronous resonance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nagabhushana, B.S., Chandrasekharaiah, H.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue
container_start_page 416
container_title
container_volume
creator Nagabhushana, B.S.
Chandrasekharaiah, H.S.
description Artificial neural networks (ANNs) are being advantageously applied to power system analysis problems. They possess the ability to establish complicated input-output mappings through a learning process, without any explicit programming. In this paper, an ANN based method for subsynchronous resonance (SSR) analysis is presented. The designed ANN outputs a measure of the possibility of the occurrence of SSR and is fully trained to accommodate the variations of power system parameters over the entire operating range. The effectiveness of this approach is tested by experimenting on the first bench mark model proposed by IEEE Task Force on SSR.
doi_str_mv 10.1109/ISAP.1996.501109
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_501109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>501109</ieee_id><sourcerecordid>501109</sourcerecordid><originalsourceid>FETCH-ieee_primary_5011093</originalsourceid><addsrcrecordid>eNp9jr0KwjAYRQMi-NddnPIC1sRYtWMRRZ3EOggiJUgqn6ZJyZcifXt_Z89y4NzlEtLnLOScxaNNmuxCHsfTMGLv0CAdNpszITiPji0SIN7Yi0nEx1y0yTYxUtcISG1O03RPKwRzpdJ5yOECUlOjKveRf1h3R3oq7UM5ijV6VVCEotLSgzXnHmnmUqMKfu6SwWp5WKyHoJTKSgeFdHX2fSX-jk_aCzx6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Analysis of SSR using artificial neural networks [power system simulation]</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nagabhushana, B.S. ; Chandrasekharaiah, H.S.</creator><creatorcontrib>Nagabhushana, B.S. ; Chandrasekharaiah, H.S.</creatorcontrib><description>Artificial neural networks (ANNs) are being advantageously applied to power system analysis problems. They possess the ability to establish complicated input-output mappings through a learning process, without any explicit programming. In this paper, an ANN based method for subsynchronous resonance (SSR) analysis is presented. The designed ANN outputs a measure of the possibility of the occurrence of SSR and is fully trained to accommodate the variations of power system parameters over the entire operating range. The effectiveness of this approach is tested by experimenting on the first bench mark model proposed by IEEE Task Force on SSR.</description><identifier>ISBN: 078033115X</identifier><identifier>ISBN: 9780780331150</identifier><identifier>DOI: 10.1109/ISAP.1996.501109</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Capacitance ; Capacitors ; Inductors ; Neural networks ; Power systems ; Reactive power ; Rotors ; Static VAr compensators ; Thyristors</subject><ispartof>Proceedings of International Conference on Intelligent System Application to Power Systems, 1996, p.416-420</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/501109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/501109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nagabhushana, B.S.</creatorcontrib><creatorcontrib>Chandrasekharaiah, H.S.</creatorcontrib><title>Analysis of SSR using artificial neural networks [power system simulation]</title><title>Proceedings of International Conference on Intelligent System Application to Power Systems</title><addtitle>ISAP</addtitle><description>Artificial neural networks (ANNs) are being advantageously applied to power system analysis problems. They possess the ability to establish complicated input-output mappings through a learning process, without any explicit programming. In this paper, an ANN based method for subsynchronous resonance (SSR) analysis is presented. The designed ANN outputs a measure of the possibility of the occurrence of SSR and is fully trained to accommodate the variations of power system parameters over the entire operating range. The effectiveness of this approach is tested by experimenting on the first bench mark model proposed by IEEE Task Force on SSR.</description><subject>Artificial neural networks</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Inductors</subject><subject>Neural networks</subject><subject>Power systems</subject><subject>Reactive power</subject><subject>Rotors</subject><subject>Static VAr compensators</subject><subject>Thyristors</subject><isbn>078033115X</isbn><isbn>9780780331150</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jr0KwjAYRQMi-NddnPIC1sRYtWMRRZ3EOggiJUgqn6ZJyZcifXt_Z89y4NzlEtLnLOScxaNNmuxCHsfTMGLv0CAdNpszITiPji0SIN7Yi0nEx1y0yTYxUtcISG1O03RPKwRzpdJ5yOECUlOjKveRf1h3R3oq7UM5ijV6VVCEotLSgzXnHmnmUqMKfu6SwWp5WKyHoJTKSgeFdHX2fSX-jk_aCzx6</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Nagabhushana, B.S.</creator><creator>Chandrasekharaiah, H.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Analysis of SSR using artificial neural networks [power system simulation]</title><author>Nagabhushana, B.S. ; Chandrasekharaiah, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5011093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial neural networks</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Inductors</topic><topic>Neural networks</topic><topic>Power systems</topic><topic>Reactive power</topic><topic>Rotors</topic><topic>Static VAr compensators</topic><topic>Thyristors</topic><toplevel>online_resources</toplevel><creatorcontrib>Nagabhushana, B.S.</creatorcontrib><creatorcontrib>Chandrasekharaiah, H.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nagabhushana, B.S.</au><au>Chandrasekharaiah, H.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analysis of SSR using artificial neural networks [power system simulation]</atitle><btitle>Proceedings of International Conference on Intelligent System Application to Power Systems</btitle><stitle>ISAP</stitle><date>1996</date><risdate>1996</risdate><spage>416</spage><epage>420</epage><pages>416-420</pages><isbn>078033115X</isbn><isbn>9780780331150</isbn><abstract>Artificial neural networks (ANNs) are being advantageously applied to power system analysis problems. They possess the ability to establish complicated input-output mappings through a learning process, without any explicit programming. In this paper, an ANN based method for subsynchronous resonance (SSR) analysis is presented. The designed ANN outputs a measure of the possibility of the occurrence of SSR and is fully trained to accommodate the variations of power system parameters over the entire operating range. The effectiveness of this approach is tested by experimenting on the first bench mark model proposed by IEEE Task Force on SSR.</abstract><pub>IEEE</pub><doi>10.1109/ISAP.1996.501109</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 078033115X
ispartof Proceedings of International Conference on Intelligent System Application to Power Systems, 1996, p.416-420
issn
language eng
recordid cdi_ieee_primary_501109
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Capacitance
Capacitors
Inductors
Neural networks
Power systems
Reactive power
Rotors
Static VAr compensators
Thyristors
title Analysis of SSR using artificial neural networks [power system simulation]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analysis%20of%20SSR%20using%20artificial%20neural%20networks%20%5Bpower%20system%20simulation%5D&rft.btitle=Proceedings%20of%20International%20Conference%20on%20Intelligent%20System%20Application%20to%20Power%20Systems&rft.au=Nagabhushana,%20B.S.&rft.date=1996&rft.spage=416&rft.epage=420&rft.pages=416-420&rft.isbn=078033115X&rft.isbn_list=9780780331150&rft_id=info:doi/10.1109/ISAP.1996.501109&rft_dat=%3Cieee_6IE%3E501109%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=501109&rfr_iscdi=true