Genetic optimisation of control parameters of a neural network

One of the shortcomings of artificial neural networks (ANNs) is the difficulty in predicting the best control parameters for a certain application. The number of combinations of parameters is very large. This makes it very inefficient and expensive to search manually by trial and error. Genetic algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Choi, B., Bluff, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue
container_start_page 174
container_title
container_volume
creator Choi, B.
Bluff, K.
description One of the shortcomings of artificial neural networks (ANNs) is the difficulty in predicting the best control parameters for a certain application. The number of combinations of parameters is very large. This makes it very inefficient and expensive to search manually by trial and error. Genetic algorithms (GAs) are an excellent and effective search technique suitable for this task. This paper describes an investigation into the use of GAs to automate the choice of parameters in both a standard backpropagation (SBP) and a fuzzy backpropagation (FBP) network for different applications.
doi_str_mv 10.1109/ANNES.1995.499466
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_499466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>499466</ieee_id><sourcerecordid>499466</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-29f0d24400772ff374b359b225bfd0a1900c45b4d5a4884942129138b9417a4f3</originalsourceid><addsrcrecordid>eNotj81KAzEURgMiqLUPoKu8wIz5uZnkboRSaiuUurD7kplJIDozGZKI-PZW6tkcOIsPPkIeOKs5Z_i0Ohw27zVHVDUgQtNckTtmuGk01yBuyDLnD3YGlJJS35LnrZtcCR2NcwljyLaEONHoaRenkuJAZ5vs6IpL-a9aOrmvZIezyndMn_fk2tshu-W_F-T4sjmud9X-bfu6Xu2rYLBUAj3rBQBjWgvvpYZWKmyFUK3vmeXIWAeqhV5ZMAYQBBfIpWkRuLbg5YI8XmaDc-40pzDa9HO6HJS_06JFwQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic optimisation of control parameters of a neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Choi, B. ; Bluff, K.</creator><creatorcontrib>Choi, B. ; Bluff, K.</creatorcontrib><description>One of the shortcomings of artificial neural networks (ANNs) is the difficulty in predicting the best control parameters for a certain application. The number of combinations of parameters is very large. This makes it very inefficient and expensive to search manually by trial and error. Genetic algorithms (GAs) are an excellent and effective search technique suitable for this task. This paper describes an investigation into the use of GAs to automate the choice of parameters in both a standard backpropagation (SBP) and a fuzzy backpropagation (FBP) network for different applications.</description><identifier>ISBN: 0818671742</identifier><identifier>ISBN: 9780818671746</identifier><identifier>DOI: 10.1109/ANNES.1995.499466</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Frequency ; Fuzzy sets ; Genetic algorithms ; Information technology ; Neural networks ; Optimal control ; Pattern recognition ; Space technology ; Training data</subject><ispartof>Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, 1995, p.174-177</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/499466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/499466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Choi, B.</creatorcontrib><creatorcontrib>Bluff, K.</creatorcontrib><title>Genetic optimisation of control parameters of a neural network</title><title>Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems</title><addtitle>ANNES</addtitle><description>One of the shortcomings of artificial neural networks (ANNs) is the difficulty in predicting the best control parameters for a certain application. The number of combinations of parameters is very large. This makes it very inefficient and expensive to search manually by trial and error. Genetic algorithms (GAs) are an excellent and effective search technique suitable for this task. This paper describes an investigation into the use of GAs to automate the choice of parameters in both a standard backpropagation (SBP) and a fuzzy backpropagation (FBP) network for different applications.</description><subject>Artificial neural networks</subject><subject>Frequency</subject><subject>Fuzzy sets</subject><subject>Genetic algorithms</subject><subject>Information technology</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Pattern recognition</subject><subject>Space technology</subject><subject>Training data</subject><isbn>0818671742</isbn><isbn>9780818671746</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEURgMiqLUPoKu8wIz5uZnkboRSaiuUurD7kplJIDozGZKI-PZW6tkcOIsPPkIeOKs5Z_i0Ohw27zVHVDUgQtNckTtmuGk01yBuyDLnD3YGlJJS35LnrZtcCR2NcwljyLaEONHoaRenkuJAZ5vs6IpL-a9aOrmvZIezyndMn_fk2tshu-W_F-T4sjmud9X-bfu6Xu2rYLBUAj3rBQBjWgvvpYZWKmyFUK3vmeXIWAeqhV5ZMAYQBBfIpWkRuLbg5YI8XmaDc-40pzDa9HO6HJS_06JFwQ</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Choi, B.</creator><creator>Bluff, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Genetic optimisation of control parameters of a neural network</title><author>Choi, B. ; Bluff, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-29f0d24400772ff374b359b225bfd0a1900c45b4d5a4884942129138b9417a4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Artificial neural networks</topic><topic>Frequency</topic><topic>Fuzzy sets</topic><topic>Genetic algorithms</topic><topic>Information technology</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Pattern recognition</topic><topic>Space technology</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, B.</creatorcontrib><creatorcontrib>Bluff, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Choi, B.</au><au>Bluff, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic optimisation of control parameters of a neural network</atitle><btitle>Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems</btitle><stitle>ANNES</stitle><date>1995</date><risdate>1995</risdate><spage>174</spage><epage>177</epage><pages>174-177</pages><isbn>0818671742</isbn><isbn>9780818671746</isbn><abstract>One of the shortcomings of artificial neural networks (ANNs) is the difficulty in predicting the best control parameters for a certain application. The number of combinations of parameters is very large. This makes it very inefficient and expensive to search manually by trial and error. Genetic algorithms (GAs) are an excellent and effective search technique suitable for this task. This paper describes an investigation into the use of GAs to automate the choice of parameters in both a standard backpropagation (SBP) and a fuzzy backpropagation (FBP) network for different applications.</abstract><pub>IEEE</pub><doi>10.1109/ANNES.1995.499466</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818671742
ispartof Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, 1995, p.174-177
issn
language eng
recordid cdi_ieee_primary_499466
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Frequency
Fuzzy sets
Genetic algorithms
Information technology
Neural networks
Optimal control
Pattern recognition
Space technology
Training data
title Genetic optimisation of control parameters of a neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20optimisation%20of%20control%20parameters%20of%20a%20neural%20network&rft.btitle=Proceedings%201995%20Second%20New%20Zealand%20International%20Two-Stream%20Conference%20on%20Artificial%20Neural%20Networks%20and%20Expert%20Systems&rft.au=Choi,%20B.&rft.date=1995&rft.spage=174&rft.epage=177&rft.pages=174-177&rft.isbn=0818671742&rft.isbn_list=9780818671746&rft_id=info:doi/10.1109/ANNES.1995.499466&rft_dat=%3Cieee_6IE%3E499466%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=499466&rfr_iscdi=true