Development and evaluation of an open-ended computational evolution system for the creation of digital organisms with complex genetic architecture

Epistasis, or gene-gene interaction, is a ubiquitous phenomenon that is inadequately addressed in human genetic studies. There are few tools that can accurately identify high-order epistatic interactions, and there is a lack of general understanding as to how epistatic interactions fit into genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tyler, A.L., White, B.C., Greene, C.S., Andrews, P.C., Cowper-Sallari, R., Moore, J.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2912
container_issue
container_start_page 2907
container_title
container_volume
creator Tyler, A.L.
White, B.C.
Greene, C.S.
Andrews, P.C.
Cowper-Sallari, R.
Moore, J.H.
description Epistasis, or gene-gene interaction, is a ubiquitous phenomenon that is inadequately addressed in human genetic studies. There are few tools that can accurately identify high-order epistatic interactions, and there is a lack of general understanding as to how epistatic interactions fit into genetic architecture. Here we approach both problems through the lens of genetic programming (GP). It has recently been proposed that increasing open-endedness of GP will result in more complex solutions that better acknowledge the complexity of human genetic datasets. Moreover, the solutions evolved in open-ended GP can serve as model organisms in which to study general effects of epistasis on phenotype. Here we introduce a prototype computational evolution system that implements an open-ended GP and generates organisms that display epistatic interactions. These interactions are significantly more prevalent and have a greater effect on fitness than epistatic interactions in organisms generated in the absence of selection.
doi_str_mv 10.1109/CEC.2009.4983308
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4983308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4983308</ieee_id><sourcerecordid>4983308</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2863462a268bc3810538f4dbc99d3d7a249f867f1c06a04a72885351668772db3</originalsourceid><addsrcrecordid>eNpFkMtKw0AUhsdLwba6F9zMC6TOLXNZSq0XKLhRcFemMyftSJIJyaTa1_CJDbXo6sD_fXyLg9A1JTNKibmdL-YzRoiZCaM5J_oETahgQjCTm_wUjakRNCOEybN_oNX5AIg2mVL6fYQmQ0AbohU3F2jSdR-EUJFTM0bf97CDMjYV1Anb2mPY2bK3KcQax2JYcGygzqD24LGLVdOnA7TlYMayP4jdvktQ4SK2OG0Buxb-Aj5sQhrk2G5sHbqqw58hbQ-lEr7wBmpIwWHbum1I4FLfwiUaFbbs4Op4p-jtYfE6f8qWL4_P87tlFqjKU8a05EIyy6ReO64pybkuhF87Yzz3yjJhCi1VQR2RlgirmNY5z6mUWinm13yKbn67AQBWTRsq2-5Xxy_zHybHbX4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Development and evaluation of an open-ended computational evolution system for the creation of digital organisms with complex genetic architecture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tyler, A.L. ; White, B.C. ; Greene, C.S. ; Andrews, P.C. ; Cowper-Sallari, R. ; Moore, J.H.</creator><creatorcontrib>Tyler, A.L. ; White, B.C. ; Greene, C.S. ; Andrews, P.C. ; Cowper-Sallari, R. ; Moore, J.H.</creatorcontrib><description>Epistasis, or gene-gene interaction, is a ubiquitous phenomenon that is inadequately addressed in human genetic studies. There are few tools that can accurately identify high-order epistatic interactions, and there is a lack of general understanding as to how epistatic interactions fit into genetic architecture. Here we approach both problems through the lens of genetic programming (GP). It has recently been proposed that increasing open-endedness of GP will result in more complex solutions that better acknowledge the complexity of human genetic datasets. Moreover, the solutions evolved in open-ended GP can serve as model organisms in which to study general effects of epistasis on phenotype. Here we introduce a prototype computational evolution system that implements an open-ended GP and generates organisms that display epistatic interactions. These interactions are significantly more prevalent and have a greater effect on fitness than epistatic interactions in organisms generated in the absence of selection.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4983308</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological systems ; Biology computing ; Computer architecture ; Diseases ; Evolution (biology) ; Genetic programming ; Humans ; Molecular biophysics ; Organisms ; Prototypes</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.2907-2912</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4983308$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,798,2062,27934,54767,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4983308$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tyler, A.L.</creatorcontrib><creatorcontrib>White, B.C.</creatorcontrib><creatorcontrib>Greene, C.S.</creatorcontrib><creatorcontrib>Andrews, P.C.</creatorcontrib><creatorcontrib>Cowper-Sallari, R.</creatorcontrib><creatorcontrib>Moore, J.H.</creatorcontrib><title>Development and evaluation of an open-ended computational evolution system for the creation of digital organisms with complex genetic architecture</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Epistasis, or gene-gene interaction, is a ubiquitous phenomenon that is inadequately addressed in human genetic studies. There are few tools that can accurately identify high-order epistatic interactions, and there is a lack of general understanding as to how epistatic interactions fit into genetic architecture. Here we approach both problems through the lens of genetic programming (GP). It has recently been proposed that increasing open-endedness of GP will result in more complex solutions that better acknowledge the complexity of human genetic datasets. Moreover, the solutions evolved in open-ended GP can serve as model organisms in which to study general effects of epistasis on phenotype. Here we introduce a prototype computational evolution system that implements an open-ended GP and generates organisms that display epistatic interactions. These interactions are significantly more prevalent and have a greater effect on fitness than epistatic interactions in organisms generated in the absence of selection.</description><subject>Biological systems</subject><subject>Biology computing</subject><subject>Computer architecture</subject><subject>Diseases</subject><subject>Evolution (biology)</subject><subject>Genetic programming</subject><subject>Humans</subject><subject>Molecular biophysics</subject><subject>Organisms</subject><subject>Prototypes</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKw0AUhsdLwba6F9zMC6TOLXNZSq0XKLhRcFemMyftSJIJyaTa1_CJDbXo6sD_fXyLg9A1JTNKibmdL-YzRoiZCaM5J_oETahgQjCTm_wUjakRNCOEybN_oNX5AIg2mVL6fYQmQ0AbohU3F2jSdR-EUJFTM0bf97CDMjYV1Anb2mPY2bK3KcQax2JYcGygzqD24LGLVdOnA7TlYMayP4jdvktQ4SK2OG0Buxb-Aj5sQhrk2G5sHbqqw58hbQ-lEr7wBmpIwWHbum1I4FLfwiUaFbbs4Op4p-jtYfE6f8qWL4_P87tlFqjKU8a05EIyy6ReO64pybkuhF87Yzz3yjJhCi1VQR2RlgirmNY5z6mUWinm13yKbn67AQBWTRsq2-5Xxy_zHybHbX4</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Tyler, A.L.</creator><creator>White, B.C.</creator><creator>Greene, C.S.</creator><creator>Andrews, P.C.</creator><creator>Cowper-Sallari, R.</creator><creator>Moore, J.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>Development and evaluation of an open-ended computational evolution system for the creation of digital organisms with complex genetic architecture</title><author>Tyler, A.L. ; White, B.C. ; Greene, C.S. ; Andrews, P.C. ; Cowper-Sallari, R. ; Moore, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2863462a268bc3810538f4dbc99d3d7a249f867f1c06a04a72885351668772db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological systems</topic><topic>Biology computing</topic><topic>Computer architecture</topic><topic>Diseases</topic><topic>Evolution (biology)</topic><topic>Genetic programming</topic><topic>Humans</topic><topic>Molecular biophysics</topic><topic>Organisms</topic><topic>Prototypes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyler, A.L.</creatorcontrib><creatorcontrib>White, B.C.</creatorcontrib><creatorcontrib>Greene, C.S.</creatorcontrib><creatorcontrib>Andrews, P.C.</creatorcontrib><creatorcontrib>Cowper-Sallari, R.</creatorcontrib><creatorcontrib>Moore, J.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tyler, A.L.</au><au>White, B.C.</au><au>Greene, C.S.</au><au>Andrews, P.C.</au><au>Cowper-Sallari, R.</au><au>Moore, J.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Development and evaluation of an open-ended computational evolution system for the creation of digital organisms with complex genetic architecture</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-05</date><risdate>2009</risdate><spage>2907</spage><epage>2912</epage><pages>2907-2912</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>Epistasis, or gene-gene interaction, is a ubiquitous phenomenon that is inadequately addressed in human genetic studies. There are few tools that can accurately identify high-order epistatic interactions, and there is a lack of general understanding as to how epistatic interactions fit into genetic architecture. Here we approach both problems through the lens of genetic programming (GP). It has recently been proposed that increasing open-endedness of GP will result in more complex solutions that better acknowledge the complexity of human genetic datasets. Moreover, the solutions evolved in open-ended GP can serve as model organisms in which to study general effects of epistasis on phenotype. Here we introduce a prototype computational evolution system that implements an open-ended GP and generates organisms that display epistatic interactions. These interactions are significantly more prevalent and have a greater effect on fitness than epistatic interactions in organisms generated in the absence of selection.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4983308</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2009 IEEE Congress on Evolutionary Computation, 2009, p.2907-2912
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4983308
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological systems
Biology computing
Computer architecture
Diseases
Evolution (biology)
Genetic programming
Humans
Molecular biophysics
Organisms
Prototypes
title Development and evaluation of an open-ended computational evolution system for the creation of digital organisms with complex genetic architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Development%20and%20evaluation%20of%20an%20open-ended%20computational%20evolution%20system%20for%20the%20creation%20of%20digital%20organisms%20with%20complex%20genetic%20architecture&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Tyler,%20A.L.&rft.date=2009-05&rft.spage=2907&rft.epage=2912&rft.pages=2907-2912&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4983308&rft_dat=%3Cieee_6IE%3E4983308%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4983308&rfr_iscdi=true