Automatic clustering with multi-objective Differential Evolution algorithms

This paper applies the differential evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective optimization (MO) framework. It compares the performances of four recently developed multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suresh, K., Kundu, D., Ghosh, S., Das, S., Abraham, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2597
container_issue
container_start_page 2590
container_title
container_volume
creator Suresh, K.
Kundu, D.
Ghosh, S.
Das, S.
Abraham, A.
description This paper applies the differential evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective optimization (MO) framework. It compares the performances of four recently developed multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for DE. The performances of four DE variants have also been contrasted to that of two most well-known schemes of MO clustering namely the Non Dominated Sorting Genetic Algorithm (NSGA II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). Experimental results over six artificial and four real life datasets of varying range of complexities indicates that DE holds immense promise as a candidate algorithm for devising MO clustering schemes.
doi_str_mv 10.1109/CEC.2009.4983267
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4983267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4983267</ieee_id><sourcerecordid>4983267</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-b7b2d264b2b55acb068ea2a57c694f758c8403613cacafae21679a7b1929bfe3</originalsourceid><addsrcrecordid>eNpFkLtOwzAYRs2lEk1hR2LJCyT4bv9jFcJFVGLpwFbZxi6uckGJU8TbE4lKTN9wPp3hIHRLcEkIhvuqrkqKMZQcNKNSnaGMcMo5BQHiHC0JcFJgTOXFP9DqcgZYQ6GUfl-gbBZowFoxuELZOB4wJlwQWKLX9ZT61qToctdMY_JD7Pb5d0yfeTs1KRa9PXiX4tHnDzEEP_guRdPk9bFvphT7LjfNvh_mfzteo0UwzehvTrtC28d6Wz0Xm7enl2q9KSIlKhVWWfpBJbfUCmGcxVJ7Q41QTgIPSminOWaSMGecCcZTIhUYZQlQsMGzFbr700bv_e5riK0ZfnanOuwXbt9UKg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic clustering with multi-objective Differential Evolution algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Suresh, K. ; Kundu, D. ; Ghosh, S. ; Das, S. ; Abraham, A.</creator><creatorcontrib>Suresh, K. ; Kundu, D. ; Ghosh, S. ; Das, S. ; Abraham, A.</creatorcontrib><description>This paper applies the differential evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective optimization (MO) framework. It compares the performances of four recently developed multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for DE. The performances of four DE variants have also been contrasted to that of two most well-known schemes of MO clustering namely the Non Dominated Sorting Genetic Algorithm (NSGA II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). Experimental results over six artificial and four real life datasets of varying range of complexities indicates that DE holds immense promise as a candidate algorithm for devising MO clustering schemes.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4983267</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Clustering methods ; Genetic algorithms ; Machine intelligence ; Optimization methods ; Paper technology ; Pareto optimization ; Partitioning algorithms ; Quality of service ; Sorting</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.2590-2597</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4983267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2051,27904,54737,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4983267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suresh, K.</creatorcontrib><creatorcontrib>Kundu, D.</creatorcontrib><creatorcontrib>Ghosh, S.</creatorcontrib><creatorcontrib>Das, S.</creatorcontrib><creatorcontrib>Abraham, A.</creatorcontrib><title>Automatic clustering with multi-objective Differential Evolution algorithms</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper applies the differential evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective optimization (MO) framework. It compares the performances of four recently developed multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for DE. The performances of four DE variants have also been contrasted to that of two most well-known schemes of MO clustering namely the Non Dominated Sorting Genetic Algorithm (NSGA II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). Experimental results over six artificial and four real life datasets of varying range of complexities indicates that DE holds immense promise as a candidate algorithm for devising MO clustering schemes.</description><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Genetic algorithms</subject><subject>Machine intelligence</subject><subject>Optimization methods</subject><subject>Paper technology</subject><subject>Pareto optimization</subject><subject>Partitioning algorithms</subject><subject>Quality of service</subject><subject>Sorting</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkLtOwzAYRs2lEk1hR2LJCyT4bv9jFcJFVGLpwFbZxi6uckGJU8TbE4lKTN9wPp3hIHRLcEkIhvuqrkqKMZQcNKNSnaGMcMo5BQHiHC0JcFJgTOXFP9DqcgZYQ6GUfl-gbBZowFoxuELZOB4wJlwQWKLX9ZT61qToctdMY_JD7Pb5d0yfeTs1KRa9PXiX4tHnDzEEP_guRdPk9bFvphT7LjfNvh_mfzteo0UwzehvTrtC28d6Wz0Xm7enl2q9KSIlKhVWWfpBJbfUCmGcxVJ7Q41QTgIPSminOWaSMGecCcZTIhUYZQlQsMGzFbr700bv_e5riK0ZfnanOuwXbt9UKg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Suresh, K.</creator><creator>Kundu, D.</creator><creator>Ghosh, S.</creator><creator>Das, S.</creator><creator>Abraham, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20090101</creationdate><title>Automatic clustering with multi-objective Differential Evolution algorithms</title><author>Suresh, K. ; Kundu, D. ; Ghosh, S. ; Das, S. ; Abraham, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-b7b2d264b2b55acb068ea2a57c694f758c8403613cacafae21679a7b1929bfe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Genetic algorithms</topic><topic>Machine intelligence</topic><topic>Optimization methods</topic><topic>Paper technology</topic><topic>Pareto optimization</topic><topic>Partitioning algorithms</topic><topic>Quality of service</topic><topic>Sorting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh, K.</creatorcontrib><creatorcontrib>Kundu, D.</creatorcontrib><creatorcontrib>Ghosh, S.</creatorcontrib><creatorcontrib>Das, S.</creatorcontrib><creatorcontrib>Abraham, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suresh, K.</au><au>Kundu, D.</au><au>Ghosh, S.</au><au>Das, S.</au><au>Abraham, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic clustering with multi-objective Differential Evolution algorithms</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>2590</spage><epage>2597</epage><pages>2590-2597</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>This paper applies the differential evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective optimization (MO) framework. It compares the performances of four recently developed multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for DE. The performances of four DE variants have also been contrasted to that of two most well-known schemes of MO clustering namely the Non Dominated Sorting Genetic Algorithm (NSGA II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). Experimental results over six artificial and four real life datasets of varying range of complexities indicates that DE holds immense promise as a candidate algorithm for devising MO clustering schemes.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4983267</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2009 IEEE Congress on Evolutionary Computation, 2009, p.2590-2597
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4983267
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Clustering methods
Genetic algorithms
Machine intelligence
Optimization methods
Paper technology
Pareto optimization
Partitioning algorithms
Quality of service
Sorting
title Automatic clustering with multi-objective Differential Evolution algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20clustering%20with%20multi-objective%20Differential%20Evolution%20algorithms&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Suresh,%20K.&rft.date=2009-01-01&rft.spage=2590&rft.epage=2597&rft.pages=2590-2597&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4983267&rft_dat=%3Cieee_6IE%3E4983267%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4983267&rfr_iscdi=true