Neuro-Evolution approaches to collective behavior

This paper is a preliminary study of the types of collective behavior tasks that are best solved by neuro-evolution (NE). This research tests a hypothesis that for a multi-rover task, the best approach (for deriving effective collective behaviors) is to evolve complete artificial neural network (ANN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nitschke, G.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1561
container_issue
container_start_page 1554
container_title
container_volume
creator Nitschke, G.S.
description This paper is a preliminary study of the types of collective behavior tasks that are best solved by neuro-evolution (NE). This research tests a hypothesis that for a multi-rover task, the best approach (for deriving effective collective behaviors) is to evolve complete artificial neural network (ANN) controllers, and then combine controller behaviors in a collective behavior context. Such methods are called multi-agent conventional neuro-evolution (multi-agent CNE). This is opposed to methods such as enforced sub-populations (ESP) which evolves individual neurons and then combines them to form complete ANN controllers. Single and multi-agent CNE and ESP approaches to evolving collective behavior solutions are tested comparatively in the multi-rover task. The multi-rover task requires that teams of rovers (controllers) cooperate in order to detect features of interest in a virtual environment. Results indicate that a multi-agent CNE approach derives rover teams with a higher task performance and genotype diversity, comparative to ESP.
doi_str_mv 10.1109/CEC.2009.4983127
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4983127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4983127</ieee_id><sourcerecordid>4983127</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7076724fd84acc6ef152152cb67a365f200e0ec82b6bf626b018b5445e69e7eb3</originalsourceid><addsrcrecordid>eNpFkMtKxEAURNvHgJPRveAmP9Dx3k4_lxLiAwbdKLgbutsbJhLtkGQC_r0BB4SCWhw4FMXYNUKBCO62qqtCALhCOluiMCcsQymkFE45dcrW6CRyAKHP_oE15wsA67gx9n3FskVgHVhTuguWjeMnAEqFbs3wmQ5D4vWcusPUpu_c9_2QfNzTmE8pj6nrKE7tTHmgvZ_bNFyyVeO7ka6OvWFv9_Vr9ci3Lw9P1d2Wt2jUxA0YbYRsPqz0MWpqUIklMWjjS62aZREBRSuCDo0WOgDaoKRUpB0ZCuWG3fx5WyLa9UP75Yef3fGE8hfKVUlu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neuro-Evolution approaches to collective behavior</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nitschke, G.S.</creator><creatorcontrib>Nitschke, G.S.</creatorcontrib><description>This paper is a preliminary study of the types of collective behavior tasks that are best solved by neuro-evolution (NE). This research tests a hypothesis that for a multi-rover task, the best approach (for deriving effective collective behaviors) is to evolve complete artificial neural network (ANN) controllers, and then combine controller behaviors in a collective behavior context. Such methods are called multi-agent conventional neuro-evolution (multi-agent CNE). This is opposed to methods such as enforced sub-populations (ESP) which evolves individual neurons and then combines them to form complete ANN controllers. Single and multi-agent CNE and ESP approaches to evolving collective behavior solutions are tested comparatively in the multi-rover task. The multi-rover task requires that teams of rovers (controllers) cooperate in order to detect features of interest in a virtual environment. Results indicate that a multi-agent CNE approach derives rover teams with a higher task performance and genotype diversity, comparative to ESP.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4983127</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Collective Behavior ; Computer vision ; Electrostatic precipitators ; Neuro-Evolution ; Neurons ; Rover ; Testing ; Virtual environment</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.1554-1561</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4983127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,793,2052,27906,54739,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4983127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nitschke, G.S.</creatorcontrib><title>Neuro-Evolution approaches to collective behavior</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper is a preliminary study of the types of collective behavior tasks that are best solved by neuro-evolution (NE). This research tests a hypothesis that for a multi-rover task, the best approach (for deriving effective collective behaviors) is to evolve complete artificial neural network (ANN) controllers, and then combine controller behaviors in a collective behavior context. Such methods are called multi-agent conventional neuro-evolution (multi-agent CNE). This is opposed to methods such as enforced sub-populations (ESP) which evolves individual neurons and then combines them to form complete ANN controllers. Single and multi-agent CNE and ESP approaches to evolving collective behavior solutions are tested comparatively in the multi-rover task. The multi-rover task requires that teams of rovers (controllers) cooperate in order to detect features of interest in a virtual environment. Results indicate that a multi-agent CNE approach derives rover teams with a higher task performance and genotype diversity, comparative to ESP.</description><subject>Artificial neural networks</subject><subject>Collective Behavior</subject><subject>Computer vision</subject><subject>Electrostatic precipitators</subject><subject>Neuro-Evolution</subject><subject>Neurons</subject><subject>Rover</subject><subject>Testing</subject><subject>Virtual environment</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKxEAURNvHgJPRveAmP9Dx3k4_lxLiAwbdKLgbutsbJhLtkGQC_r0BB4SCWhw4FMXYNUKBCO62qqtCALhCOluiMCcsQymkFE45dcrW6CRyAKHP_oE15wsA67gx9n3FskVgHVhTuguWjeMnAEqFbs3wmQ5D4vWcusPUpu_c9_2QfNzTmE8pj6nrKE7tTHmgvZ_bNFyyVeO7ka6OvWFv9_Vr9ci3Lw9P1d2Wt2jUxA0YbYRsPqz0MWpqUIklMWjjS62aZREBRSuCDo0WOgDaoKRUpB0ZCuWG3fx5WyLa9UP75Yef3fGE8hfKVUlu</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Nitschke, G.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>Neuro-Evolution approaches to collective behavior</title><author>Nitschke, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7076724fd84acc6ef152152cb67a365f200e0ec82b6bf626b018b5445e69e7eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural networks</topic><topic>Collective Behavior</topic><topic>Computer vision</topic><topic>Electrostatic precipitators</topic><topic>Neuro-Evolution</topic><topic>Neurons</topic><topic>Rover</topic><topic>Testing</topic><topic>Virtual environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitschke, G.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nitschke, G.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neuro-Evolution approaches to collective behavior</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-05</date><risdate>2009</risdate><spage>1554</spage><epage>1561</epage><pages>1554-1561</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>This paper is a preliminary study of the types of collective behavior tasks that are best solved by neuro-evolution (NE). This research tests a hypothesis that for a multi-rover task, the best approach (for deriving effective collective behaviors) is to evolve complete artificial neural network (ANN) controllers, and then combine controller behaviors in a collective behavior context. Such methods are called multi-agent conventional neuro-evolution (multi-agent CNE). This is opposed to methods such as enforced sub-populations (ESP) which evolves individual neurons and then combines them to form complete ANN controllers. Single and multi-agent CNE and ESP approaches to evolving collective behavior solutions are tested comparatively in the multi-rover task. The multi-rover task requires that teams of rovers (controllers) cooperate in order to detect features of interest in a virtual environment. Results indicate that a multi-agent CNE approach derives rover teams with a higher task performance and genotype diversity, comparative to ESP.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4983127</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2009 IEEE Congress on Evolutionary Computation, 2009, p.1554-1561
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4983127
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Collective Behavior
Computer vision
Electrostatic precipitators
Neuro-Evolution
Neurons
Rover
Testing
Virtual environment
title Neuro-Evolution approaches to collective behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neuro-Evolution%20approaches%20to%20collective%20behavior&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Nitschke,%20G.S.&rft.date=2009-05&rft.spage=1554&rft.epage=1561&rft.pages=1554-1561&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4983127&rft_dat=%3Cieee_6IE%3E4983127%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4983127&rfr_iscdi=true