Optimization of the sizing of a solar thermal electricity plant: Mathematical programming versus genetic algorithms

Genetic algorithms (GAs) have been argued to constitute a flexible search thereby enabling to solve difficult problems which classical optimization methodologies may find hard to solve. This paper is intended towards this direction and show a systematic application of a GA and its modification to so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cabello, J.M., Cejudo, J.M., Luque, M., Ruiz, F., Deb, K., Tewari, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1200
container_issue
container_start_page 1193
container_title
container_volume
creator Cabello, J.M.
Cejudo, J.M.
Luque, M.
Ruiz, F.
Deb, K.
Tewari, R.
description Genetic algorithms (GAs) have been argued to constitute a flexible search thereby enabling to solve difficult problems which classical optimization methodologies may find hard to solve. This paper is intended towards this direction and show a systematic application of a GA and its modification to solve a real-world optimization problem of sizing a solar thermal electricity plant. Despite the existence of only three variables, this problem exhibits a number of other common difficulties - black-box nature of solution evaluation, massive multi-modality, wide and non-uniform range of variable values, and terribly rugged function landscape - which prohibits a classical optimization method to find even a single acceptable solution. Both GA implementations perform well and a local analysis is performed to demonstrate the optimality of obtained solutions. This study considers both classical and genetic optimization on a fairly complex yet typical real-world optimization problems and demonstrates the usefulness and future of GAs in applied optimization activities in practice.
doi_str_mv 10.1109/CEC.2009.4983081
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4983081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4983081</ieee_id><sourcerecordid>4983081</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-6bd6373a538d1791f0a0482db889dd5c10490138fe7cb96b72e9226bc9ebe1893</originalsourceid><addsrcrecordid>eNpF0EtLAzEQB_D4KNhW74KXfIGtk8duMt6k1AdUelHwVrK72W1kXyRRaD-9Wyx4GmZ-_P-HIeSWwYIxwPvlarngALiQqAVodkZmTHIpOaaYnpMpQ8kSAJ5d_INWlyOAxkQp_Tkhs7FAI2gl8IrMQvgCYDJlOCVhM0TXuoOJru9oX9G4szS4g-vq42Zo6Bvjj1ffmobaxhbRu8LFPR0a08UH-mZGbMd8Mfrg-9qbtj3Gf6wP34HWtrMjUtPUvXdx14ZrMqlME-zNac7Jx9PqffmSrDfPr8vHdeIYpDHJ8jITSphU6JIpZBUYkJqXudZYlmnBQCIwoSurihyzXHGLnGd5gTa3TKOYk7u_Xmet3Q7etcbvt6c3il-urWJs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization of the sizing of a solar thermal electricity plant: Mathematical programming versus genetic algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cabello, J.M. ; Cejudo, J.M. ; Luque, M. ; Ruiz, F. ; Deb, K. ; Tewari, R.</creator><creatorcontrib>Cabello, J.M. ; Cejudo, J.M. ; Luque, M. ; Ruiz, F. ; Deb, K. ; Tewari, R.</creatorcontrib><description>Genetic algorithms (GAs) have been argued to constitute a flexible search thereby enabling to solve difficult problems which classical optimization methodologies may find hard to solve. This paper is intended towards this direction and show a systematic application of a GA and its modification to solve a real-world optimization problem of sizing a solar thermal electricity plant. Despite the existence of only three variables, this problem exhibits a number of other common difficulties - black-box nature of solution evaluation, massive multi-modality, wide and non-uniform range of variable values, and terribly rugged function landscape - which prohibits a classical optimization method to find even a single acceptable solution. Both GA implementations perform well and a local analysis is performed to demonstrate the optimality of obtained solutions. This study considers both classical and genetic optimization on a fairly complex yet typical real-world optimization problems and demonstrates the usefulness and future of GAs in applied optimization activities in practice.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4983081</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>classical optimization ; Costs ; Genetic algorithms ; Humans ; Law ; Legal factors ; Mathematical model ; Mathematical programming ; multi-modality ; noisy objective function ; optimization ; Optimization methods ; Power generation ; Solar power generation ; Solar thermal electricity plant</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.1193-1200</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4983081$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4983081$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cabello, J.M.</creatorcontrib><creatorcontrib>Cejudo, J.M.</creatorcontrib><creatorcontrib>Luque, M.</creatorcontrib><creatorcontrib>Ruiz, F.</creatorcontrib><creatorcontrib>Deb, K.</creatorcontrib><creatorcontrib>Tewari, R.</creatorcontrib><title>Optimization of the sizing of a solar thermal electricity plant: Mathematical programming versus genetic algorithms</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Genetic algorithms (GAs) have been argued to constitute a flexible search thereby enabling to solve difficult problems which classical optimization methodologies may find hard to solve. This paper is intended towards this direction and show a systematic application of a GA and its modification to solve a real-world optimization problem of sizing a solar thermal electricity plant. Despite the existence of only three variables, this problem exhibits a number of other common difficulties - black-box nature of solution evaluation, massive multi-modality, wide and non-uniform range of variable values, and terribly rugged function landscape - which prohibits a classical optimization method to find even a single acceptable solution. Both GA implementations perform well and a local analysis is performed to demonstrate the optimality of obtained solutions. This study considers both classical and genetic optimization on a fairly complex yet typical real-world optimization problems and demonstrates the usefulness and future of GAs in applied optimization activities in practice.</description><subject>classical optimization</subject><subject>Costs</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Law</subject><subject>Legal factors</subject><subject>Mathematical model</subject><subject>Mathematical programming</subject><subject>multi-modality</subject><subject>noisy objective function</subject><subject>optimization</subject><subject>Optimization methods</subject><subject>Power generation</subject><subject>Solar power generation</subject><subject>Solar thermal electricity plant</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpF0EtLAzEQB_D4KNhW74KXfIGtk8duMt6k1AdUelHwVrK72W1kXyRRaD-9Wyx4GmZ-_P-HIeSWwYIxwPvlarngALiQqAVodkZmTHIpOaaYnpMpQ8kSAJ5d_INWlyOAxkQp_Tkhs7FAI2gl8IrMQvgCYDJlOCVhM0TXuoOJru9oX9G4szS4g-vq42Zo6Bvjj1ffmobaxhbRu8LFPR0a08UH-mZGbMd8Mfrg-9qbtj3Gf6wP34HWtrMjUtPUvXdx14ZrMqlME-zNac7Jx9PqffmSrDfPr8vHdeIYpDHJ8jITSphU6JIpZBUYkJqXudZYlmnBQCIwoSurihyzXHGLnGd5gTa3TKOYk7u_Xmet3Q7etcbvt6c3il-urWJs</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Cabello, J.M.</creator><creator>Cejudo, J.M.</creator><creator>Luque, M.</creator><creator>Ruiz, F.</creator><creator>Deb, K.</creator><creator>Tewari, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>Optimization of the sizing of a solar thermal electricity plant: Mathematical programming versus genetic algorithms</title><author>Cabello, J.M. ; Cejudo, J.M. ; Luque, M. ; Ruiz, F. ; Deb, K. ; Tewari, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-6bd6373a538d1791f0a0482db889dd5c10490138fe7cb96b72e9226bc9ebe1893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>classical optimization</topic><topic>Costs</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Law</topic><topic>Legal factors</topic><topic>Mathematical model</topic><topic>Mathematical programming</topic><topic>multi-modality</topic><topic>noisy objective function</topic><topic>optimization</topic><topic>Optimization methods</topic><topic>Power generation</topic><topic>Solar power generation</topic><topic>Solar thermal electricity plant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabello, J.M.</creatorcontrib><creatorcontrib>Cejudo, J.M.</creatorcontrib><creatorcontrib>Luque, M.</creatorcontrib><creatorcontrib>Ruiz, F.</creatorcontrib><creatorcontrib>Deb, K.</creatorcontrib><creatorcontrib>Tewari, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cabello, J.M.</au><au>Cejudo, J.M.</au><au>Luque, M.</au><au>Ruiz, F.</au><au>Deb, K.</au><au>Tewari, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization of the sizing of a solar thermal electricity plant: Mathematical programming versus genetic algorithms</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-05</date><risdate>2009</risdate><spage>1193</spage><epage>1200</epage><pages>1193-1200</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>Genetic algorithms (GAs) have been argued to constitute a flexible search thereby enabling to solve difficult problems which classical optimization methodologies may find hard to solve. This paper is intended towards this direction and show a systematic application of a GA and its modification to solve a real-world optimization problem of sizing a solar thermal electricity plant. Despite the existence of only three variables, this problem exhibits a number of other common difficulties - black-box nature of solution evaluation, massive multi-modality, wide and non-uniform range of variable values, and terribly rugged function landscape - which prohibits a classical optimization method to find even a single acceptable solution. Both GA implementations perform well and a local analysis is performed to demonstrate the optimality of obtained solutions. This study considers both classical and genetic optimization on a fairly complex yet typical real-world optimization problems and demonstrates the usefulness and future of GAs in applied optimization activities in practice.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4983081</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2009 IEEE Congress on Evolutionary Computation, 2009, p.1193-1200
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4983081
source IEEE Electronic Library (IEL) Conference Proceedings
subjects classical optimization
Costs
Genetic algorithms
Humans
Law
Legal factors
Mathematical model
Mathematical programming
multi-modality
noisy objective function
optimization
Optimization methods
Power generation
Solar power generation
Solar thermal electricity plant
title Optimization of the sizing of a solar thermal electricity plant: Mathematical programming versus genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20of%20the%20sizing%20of%20a%20solar%20thermal%20electricity%20plant:%20Mathematical%20programming%20versus%20genetic%20algorithms&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Cabello,%20J.M.&rft.date=2009-05&rft.spage=1193&rft.epage=1200&rft.pages=1193-1200&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4983081&rft_dat=%3Cieee_6IE%3E4983081%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4983081&rfr_iscdi=true