Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization

This paper proposes an idea of approximating the hypervolume of a non-dominated solution set using a number of achievement scalarizing functions with uniformly distributed weight vectors. Each achievement scalarizing function with a different weight vector is used to measure the distance from the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ishibuchi, H., Tsukamoto, N., Sakane, Y., Nojima, Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue
container_start_page 530
container_title
container_volume
creator Ishibuchi, H.
Tsukamoto, N.
Sakane, Y.
Nojima, Y.
description This paper proposes an idea of approximating the hypervolume of a non-dominated solution set using a number of achievement scalarizing functions with uniformly distributed weight vectors. Each achievement scalarizing function with a different weight vector is used to measure the distance from the reference point of the hypervolume to the attainment surface of the non-dominated solution set along its own search direction specified by its weight vector. Our idea is to approximate the hypervolume by the average distance from the reference point to the attainment surface over a large number of uniformly distributed weight vectors (i.e., over various search directions). We examine the effect of the number of weight vectors (i.e., the number of search directions) on the approximation accuracy and the computation time of the proposed approach. As expected, experimental results show that the approximation accuracy is improved by increasing the number of weight vectors. It is also shown that the proposed approach needs much less computation time than the exact hypervolume calculation for a six-objective knapsack problem even when we use about 100,000 weight vectors.
doi_str_mv 10.1109/CEC.2009.4982991
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4982991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4982991</ieee_id><sourcerecordid>4982991</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f0fc4436a05112570d9da7834f98d2f752f5e997a3c976bff05c4dee8364ec103</originalsourceid><addsrcrecordid>eNpFkEtLw0AUhcdHwba6F9zMH0i9M5nJzF1KqFYouFFwV6bJHZ3SPEjSYvrrTVRwdbjnHD64h7FbAQshAO_TZbqQALhQaCWiOGMzoaRSEjXqczYVqEQEIJOL_8CayyEAi5Ex9n3CZgPAIlgT4xWbte0OQCgtcMrKVV9Tc6z2h4K4q-um-gqF60JV8kMbyg_uss9ARyqo7Hibub1rwmn0_aHMxlrLfdVwGgnj6ZqeF67so2q7o6FwJF7VXSjC6Qd6zSbe7Vu6-dM5e3tcvqaraP3y9Jw-rKMgjO4iDz5TKk4caCGkNpBj7oyNlUebS2-09JoQjYszNMnWe9CZyolsnCjKBMRzdvfLDUS0qZvhp6bf_C0YfwPsNGJ7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ishibuchi, H. ; Tsukamoto, N. ; Sakane, Y. ; Nojima, Y.</creator><creatorcontrib>Ishibuchi, H. ; Tsukamoto, N. ; Sakane, Y. ; Nojima, Y.</creatorcontrib><description>This paper proposes an idea of approximating the hypervolume of a non-dominated solution set using a number of achievement scalarizing functions with uniformly distributed weight vectors. Each achievement scalarizing function with a different weight vector is used to measure the distance from the reference point of the hypervolume to the attainment surface of the non-dominated solution set along its own search direction specified by its weight vector. Our idea is to approximate the hypervolume by the average distance from the reference point to the attainment surface over a large number of uniformly distributed weight vectors (i.e., over various search directions). We examine the effect of the number of weight vectors (i.e., the number of search directions) on the approximation accuracy and the computation time of the proposed approach. As expected, experimental results show that the approximation accuracy is improved by increasing the number of weight vectors. It is also shown that the proposed approach needs much less computation time than the exact hypervolume calculation for a six-objective knapsack problem even when we use about 100,000 weight vectors.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4982991</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Optimization methods</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.530-537</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4982991$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4982991$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishibuchi, H.</creatorcontrib><creatorcontrib>Tsukamoto, N.</creatorcontrib><creatorcontrib>Sakane, Y.</creatorcontrib><creatorcontrib>Nojima, Y.</creatorcontrib><title>Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper proposes an idea of approximating the hypervolume of a non-dominated solution set using a number of achievement scalarizing functions with uniformly distributed weight vectors. Each achievement scalarizing function with a different weight vector is used to measure the distance from the reference point of the hypervolume to the attainment surface of the non-dominated solution set along its own search direction specified by its weight vector. Our idea is to approximate the hypervolume by the average distance from the reference point to the attainment surface over a large number of uniformly distributed weight vectors (i.e., over various search directions). We examine the effect of the number of weight vectors (i.e., the number of search directions) on the approximation accuracy and the computation time of the proposed approach. As expected, experimental results show that the approximation accuracy is improved by increasing the number of weight vectors. It is also shown that the proposed approach needs much less computation time than the exact hypervolume calculation for a six-objective knapsack problem even when we use about 100,000 weight vectors.</description><subject>Optimization methods</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLw0AUhcdHwba6F9zMH0i9M5nJzF1KqFYouFFwV6bJHZ3SPEjSYvrrTVRwdbjnHD64h7FbAQshAO_TZbqQALhQaCWiOGMzoaRSEjXqczYVqEQEIJOL_8CayyEAi5Ex9n3CZgPAIlgT4xWbte0OQCgtcMrKVV9Tc6z2h4K4q-um-gqF60JV8kMbyg_uss9ARyqo7Hibub1rwmn0_aHMxlrLfdVwGgnj6ZqeF67so2q7o6FwJF7VXSjC6Qd6zSbe7Vu6-dM5e3tcvqaraP3y9Jw-rKMgjO4iDz5TKk4caCGkNpBj7oyNlUebS2-09JoQjYszNMnWe9CZyolsnCjKBMRzdvfLDUS0qZvhp6bf_C0YfwPsNGJ7</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Ishibuchi, H.</creator><creator>Tsukamoto, N.</creator><creator>Sakane, Y.</creator><creator>Nojima, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization</title><author>Ishibuchi, H. ; Tsukamoto, N. ; Sakane, Y. ; Nojima, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f0fc4436a05112570d9da7834f98d2f752f5e997a3c976bff05c4dee8364ec103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Optimization methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishibuchi, H.</creatorcontrib><creatorcontrib>Tsukamoto, N.</creatorcontrib><creatorcontrib>Sakane, Y.</creatorcontrib><creatorcontrib>Nojima, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishibuchi, H.</au><au>Tsukamoto, N.</au><au>Sakane, Y.</au><au>Nojima, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-05</date><risdate>2009</risdate><spage>530</spage><epage>537</epage><pages>530-537</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>This paper proposes an idea of approximating the hypervolume of a non-dominated solution set using a number of achievement scalarizing functions with uniformly distributed weight vectors. Each achievement scalarizing function with a different weight vector is used to measure the distance from the reference point of the hypervolume to the attainment surface of the non-dominated solution set along its own search direction specified by its weight vector. Our idea is to approximate the hypervolume by the average distance from the reference point to the attainment surface over a large number of uniformly distributed weight vectors (i.e., over various search directions). We examine the effect of the number of weight vectors (i.e., the number of search directions) on the approximation accuracy and the computation time of the proposed approach. As expected, experimental results show that the approximation accuracy is improved by increasing the number of weight vectors. It is also shown that the proposed approach needs much less computation time than the exact hypervolume calculation for a six-objective knapsack problem even when we use about 100,000 weight vectors.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4982991</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2009 IEEE Congress on Evolutionary Computation, 2009, p.530-537
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4982991
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Optimization methods
title Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hypervolume%20approximation%20using%20achievement%20scalarizing%20functions%20for%20evolutionary%20many-objective%20optimization&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Ishibuchi,%20H.&rft.date=2009-05&rft.spage=530&rft.epage=537&rft.pages=530-537&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4982991&rft_dat=%3Cieee_6IE%3E4982991%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4982991&rfr_iscdi=true