The Pareto-Following Variation Operator as an alternative approximation model

This paper presents a critical analysis of the Pareto-Following Variation Operator (PFVO) when used as an approximation method for Multiobjective Evolutionary Algorithms (MOEA). In previous work, we have described the development and implementation of the PFVO. The simulation results reported indica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Talukder, A.K.M.K.A., Kirley, M., Buyya, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 8
container_title
container_volume
creator Talukder, A.K.M.K.A.
Kirley, M.
Buyya, R.
description This paper presents a critical analysis of the Pareto-Following Variation Operator (PFVO) when used as an approximation method for Multiobjective Evolutionary Algorithms (MOEA). In previous work, we have described the development and implementation of the PFVO. The simulation results reported indicated that when the PFVO was integrated with NSGA-II there was a significant increase in the convergence speed of the algorithm. In this study, we extend this work. We claim that when the PFVO is combined with any MOEA that uses a non-dominated sorting routine before selection, it will lead to faster convergence and high quality solutions. Numerical results are presented for two base algorithms: SPEA-II and RM-MEDA to support are claim. We also describe enhancements to the approximation method that were introduced so that the enhanced algorithm was able to track the Pareto-optimal front in the right direction.
doi_str_mv 10.1109/CEC.2009.4982924
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_4982924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4982924</ieee_id><sourcerecordid>4982924</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-55ffb9104a9b064791eb14f24654b0de5d4dd7491bf0410022623a32805460ea3</originalsourceid><addsrcrecordid>eNpFkM1Lw0AUxNePgm31LnjZfyD1vc3b7L6jhFaFSj1U8VY2ZKORNBs2wY__3kALnubwG4aZEeIaYYEIfJsv84UC4AWxVazoRMyQFJFizfpUTJEJEwCVnf0Da85HAJYTY-zbRMzGAMtgTcoXYtb3nwBIGnkqnrYfXj676IeQrELThO-6fZevLtZuqEMrN52PbghRul66Vrpm8LEd0ZeXruti-Kn3B-M-lL65FJPKNb2_OupcvKyW2_whWW_uH_O7dVKj0UOidVUVjECOC8jIMPoCqVKUaSqg9LqksjTEWFRAOG5TmUpdqixoysC7dC5uDrm1937XxbFE_N0dD0r_AKmqUvo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Pareto-Following Variation Operator as an alternative approximation model</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Talukder, A.K.M.K.A. ; Kirley, M. ; Buyya, R.</creator><creatorcontrib>Talukder, A.K.M.K.A. ; Kirley, M. ; Buyya, R.</creatorcontrib><description>This paper presents a critical analysis of the Pareto-Following Variation Operator (PFVO) when used as an approximation method for Multiobjective Evolutionary Algorithms (MOEA). In previous work, we have described the development and implementation of the PFVO. The simulation results reported indicated that when the PFVO was integrated with NSGA-II there was a significant increase in the convergence speed of the algorithm. In this study, we extend this work. We claim that when the PFVO is combined with any MOEA that uses a non-dominated sorting routine before selection, it will lead to faster convergence and high quality solutions. Numerical results are presented for two base algorithms: SPEA-II and RM-MEDA to support are claim. We also describe enhancements to the approximation method that were introduced so that the enhanced algorithm was able to track the Pareto-optimal front in the right direction.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424429587</identifier><identifier>ISBN: 9781424429585</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424429595</identifier><identifier>EISBN: 9781424429592</identifier><identifier>DOI: 10.1109/CEC.2009.4982924</identifier><identifier>LCCN: 2008908739</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Approximation algorithms ; Approximation methods ; Computational modeling ; Constraint optimization ; Design optimization ; Evolutionary computation ; Pareto analysis ; Sorting ; Space exploration</subject><ispartof>2009 IEEE Congress on Evolutionary Computation, 2009, p.8-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4982924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4982924$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Talukder, A.K.M.K.A.</creatorcontrib><creatorcontrib>Kirley, M.</creatorcontrib><creatorcontrib>Buyya, R.</creatorcontrib><title>The Pareto-Following Variation Operator as an alternative approximation model</title><title>2009 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper presents a critical analysis of the Pareto-Following Variation Operator (PFVO) when used as an approximation method for Multiobjective Evolutionary Algorithms (MOEA). In previous work, we have described the development and implementation of the PFVO. The simulation results reported indicated that when the PFVO was integrated with NSGA-II there was a significant increase in the convergence speed of the algorithm. In this study, we extend this work. We claim that when the PFVO is combined with any MOEA that uses a non-dominated sorting routine before selection, it will lead to faster convergence and high quality solutions. Numerical results are presented for two base algorithms: SPEA-II and RM-MEDA to support are claim. We also describe enhancements to the approximation method that were introduced so that the enhanced algorithm was able to track the Pareto-optimal front in the right direction.</description><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>Computational modeling</subject><subject>Constraint optimization</subject><subject>Design optimization</subject><subject>Evolutionary computation</subject><subject>Pareto analysis</subject><subject>Sorting</subject><subject>Space exploration</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424429587</isbn><isbn>9781424429585</isbn><isbn>1424429595</isbn><isbn>9781424429592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1Lw0AUxNePgm31LnjZfyD1vc3b7L6jhFaFSj1U8VY2ZKORNBs2wY__3kALnubwG4aZEeIaYYEIfJsv84UC4AWxVazoRMyQFJFizfpUTJEJEwCVnf0Da85HAJYTY-zbRMzGAMtgTcoXYtb3nwBIGnkqnrYfXj676IeQrELThO-6fZevLtZuqEMrN52PbghRul66Vrpm8LEd0ZeXruti-Kn3B-M-lL65FJPKNb2_OupcvKyW2_whWW_uH_O7dVKj0UOidVUVjECOC8jIMPoCqVKUaSqg9LqksjTEWFRAOG5TmUpdqixoysC7dC5uDrm1937XxbFE_N0dD0r_AKmqUvo</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Talukder, A.K.M.K.A.</creator><creator>Kirley, M.</creator><creator>Buyya, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200905</creationdate><title>The Pareto-Following Variation Operator as an alternative approximation model</title><author>Talukder, A.K.M.K.A. ; Kirley, M. ; Buyya, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-55ffb9104a9b064791eb14f24654b0de5d4dd7491bf0410022623a32805460ea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>Computational modeling</topic><topic>Constraint optimization</topic><topic>Design optimization</topic><topic>Evolutionary computation</topic><topic>Pareto analysis</topic><topic>Sorting</topic><topic>Space exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talukder, A.K.M.K.A.</creatorcontrib><creatorcontrib>Kirley, M.</creatorcontrib><creatorcontrib>Buyya, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Talukder, A.K.M.K.A.</au><au>Kirley, M.</au><au>Buyya, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Pareto-Following Variation Operator as an alternative approximation model</atitle><btitle>2009 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2009-05</date><risdate>2009</risdate><spage>8</spage><epage>15</epage><pages>8-15</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424429587</isbn><isbn>9781424429585</isbn><eisbn>1424429595</eisbn><eisbn>9781424429592</eisbn><abstract>This paper presents a critical analysis of the Pareto-Following Variation Operator (PFVO) when used as an approximation method for Multiobjective Evolutionary Algorithms (MOEA). In previous work, we have described the development and implementation of the PFVO. The simulation results reported indicated that when the PFVO was integrated with NSGA-II there was a significant increase in the convergence speed of the algorithm. In this study, we extend this work. We claim that when the PFVO is combined with any MOEA that uses a non-dominated sorting routine before selection, it will lead to faster convergence and high quality solutions. Numerical results are presented for two base algorithms: SPEA-II and RM-MEDA to support are claim. We also describe enhancements to the approximation method that were introduced so that the enhanced algorithm was able to track the Pareto-optimal front in the right direction.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2009.4982924</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2009 IEEE Congress on Evolutionary Computation, 2009, p.8-15
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_4982924
source IEEE/IET Electronic Library (IEL)
subjects Algorithm design and analysis
Approximation algorithms
Approximation methods
Computational modeling
Constraint optimization
Design optimization
Evolutionary computation
Pareto analysis
Sorting
Space exploration
title The Pareto-Following Variation Operator as an alternative approximation model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Pareto-Following%20Variation%20Operator%20as%20an%20alternative%20approximation%20model&rft.btitle=2009%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Talukder,%20A.K.M.K.A.&rft.date=2009-05&rft.spage=8&rft.epage=15&rft.pages=8-15&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424429587&rft.isbn_list=9781424429585&rft_id=info:doi/10.1109/CEC.2009.4982924&rft_dat=%3Cieee_RIE%3E4982924%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429595&rft.eisbn_list=9781424429592&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4982924&rfr_iscdi=true