Affine Modeling for the Complexity of Vector Quantizers
We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are repr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | |
container_start_page | 466 |
container_title | |
container_volume | |
creator | Seraco, E.P. Gomes, J.G.R.C. |
description | We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are represented by a Lagrangian cost function J. In this work we propose an affine model for the relationship between J and thetas, based on several VQ encoders performing the map R M rarr {1,2,..., K}. A discrete source is obtained by partitioning images into 4x4 pixel blocks and extracting M = 4 principal components from each block. To design entropy-constrained VQs (ECVQs), we use the Generalized Lloyd Algorithm. To design simple interpolative VQs (IVQs), we consider only the simplest encoder: a linear transformation, followed by a layer of M scalar quantizers in parallel - the K cells of M.M are defined by a set of thresholds {t I ,... ,t T }. The T thresholds are obtained from a non-linear unconstrained optimization method based on the Nelder-Mead algorithm. |
doi_str_mv | 10.1109/DCC.2009.55 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4976520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4976520</ieee_id><sourcerecordid>4976520</sourcerecordid><originalsourceid>FETCH-LOGICAL-i160t-c7ad31ef426832b665477f99f7b536501c6179dbc32def38c8a42414eebd680e3</originalsourceid><addsrcrecordid>eNotjktLw0AUhQcfYFpduXQzfyDx3nlmliVaFSoiqNuSzNzRkTQpSQTrrzegq8Ph4zscxi4RCkRw1zdVVQgAV2h9xDIhrc5BanfMFqiEUnOX7oRlCKacAaozthjHT4DZMZgxu4oxdcQf-0Bt6t557Ac-fRCv-t2-pe80HXgf-Rv5aQbPX3U3pR8axnN2Gut2pIv_XLLX9e1LdZ9vnu4eqtUmT2hgyr2tg0SKSphSisYYrayNzkXbaGk0oDdoXWi8FIGiLH1Zz69RETXBlEByya7-dhMRbfdD2tXDYaucNVqA_AVyCkWP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Affine Modeling for the Complexity of Vector Quantizers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seraco, E.P. ; Gomes, J.G.R.C.</creator><creatorcontrib>Seraco, E.P. ; Gomes, J.G.R.C.</creatorcontrib><description>We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are represented by a Lagrangian cost function J. In this work we propose an affine model for the relationship between J and thetas, based on several VQ encoders performing the map R M rarr {1,2,..., K}. A discrete source is obtained by partitioning images into 4x4 pixel blocks and extracting M = 4 principal components from each block. To design entropy-constrained VQs (ECVQs), we use the Generalized Lloyd Algorithm. To design simple interpolative VQs (IVQs), we consider only the simplest encoder: a linear transformation, followed by a layer of M scalar quantizers in parallel - the K cells of M.M are defined by a set of thresholds {t I ,... ,t T }. The T thresholds are obtained from a non-linear unconstrained optimization method based on the Nelder-Mead algorithm.</description><identifier>ISSN: 1068-0314</identifier><identifier>ISBN: 1424437539</identifier><identifier>ISBN: 9781424437535</identifier><identifier>ISBN: 0769535925</identifier><identifier>ISBN: 9780769535920</identifier><identifier>EISSN: 2375-0359</identifier><identifier>DOI: 10.1109/DCC.2009.55</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; analog integrated circuit ; complexity ; Cost function ; Data compression ; Hardware ; Image coding ; Lagrangian functions ; Nonlinear distortion ; Partitioning algorithms ; Pixel ; Rate distortion theory ; rate-distortion-complexity ; vector quantization</subject><ispartof>2009 Data Compression Conference, 2009, p.466-466</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4976520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4976520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seraco, E.P.</creatorcontrib><creatorcontrib>Gomes, J.G.R.C.</creatorcontrib><title>Affine Modeling for the Complexity of Vector Quantizers</title><title>2009 Data Compression Conference</title><addtitle>DCC</addtitle><description>We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are represented by a Lagrangian cost function J. In this work we propose an affine model for the relationship between J and thetas, based on several VQ encoders performing the map R M rarr {1,2,..., K}. A discrete source is obtained by partitioning images into 4x4 pixel blocks and extracting M = 4 principal components from each block. To design entropy-constrained VQs (ECVQs), we use the Generalized Lloyd Algorithm. To design simple interpolative VQs (IVQs), we consider only the simplest encoder: a linear transformation, followed by a layer of M scalar quantizers in parallel - the K cells of M.M are defined by a set of thresholds {t I ,... ,t T }. The T thresholds are obtained from a non-linear unconstrained optimization method based on the Nelder-Mead algorithm.</description><subject>Algorithm design and analysis</subject><subject>analog integrated circuit</subject><subject>complexity</subject><subject>Cost function</subject><subject>Data compression</subject><subject>Hardware</subject><subject>Image coding</subject><subject>Lagrangian functions</subject><subject>Nonlinear distortion</subject><subject>Partitioning algorithms</subject><subject>Pixel</subject><subject>Rate distortion theory</subject><subject>rate-distortion-complexity</subject><subject>vector quantization</subject><issn>1068-0314</issn><issn>2375-0359</issn><isbn>1424437539</isbn><isbn>9781424437535</isbn><isbn>0769535925</isbn><isbn>9780769535920</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjktLw0AUhQcfYFpduXQzfyDx3nlmliVaFSoiqNuSzNzRkTQpSQTrrzegq8Ph4zscxi4RCkRw1zdVVQgAV2h9xDIhrc5BanfMFqiEUnOX7oRlCKacAaozthjHT4DZMZgxu4oxdcQf-0Bt6t557Ac-fRCv-t2-pe80HXgf-Rv5aQbPX3U3pR8axnN2Gut2pIv_XLLX9e1LdZ9vnu4eqtUmT2hgyr2tg0SKSphSisYYrayNzkXbaGk0oDdoXWi8FIGiLH1Zz69RETXBlEByya7-dhMRbfdD2tXDYaucNVqA_AVyCkWP</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Seraco, E.P.</creator><creator>Gomes, J.G.R.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Affine Modeling for the Complexity of Vector Quantizers</title><author>Seraco, E.P. ; Gomes, J.G.R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i160t-c7ad31ef426832b665477f99f7b536501c6179dbc32def38c8a42414eebd680e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>analog integrated circuit</topic><topic>complexity</topic><topic>Cost function</topic><topic>Data compression</topic><topic>Hardware</topic><topic>Image coding</topic><topic>Lagrangian functions</topic><topic>Nonlinear distortion</topic><topic>Partitioning algorithms</topic><topic>Pixel</topic><topic>Rate distortion theory</topic><topic>rate-distortion-complexity</topic><topic>vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Seraco, E.P.</creatorcontrib><creatorcontrib>Gomes, J.G.R.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seraco, E.P.</au><au>Gomes, J.G.R.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Affine Modeling for the Complexity of Vector Quantizers</atitle><btitle>2009 Data Compression Conference</btitle><stitle>DCC</stitle><date>2009-03</date><risdate>2009</risdate><spage>466</spage><epage>466</epage><pages>466-466</pages><issn>1068-0314</issn><eissn>2375-0359</eissn><isbn>1424437539</isbn><isbn>9781424437535</isbn><isbn>0769535925</isbn><isbn>9780769535920</isbn><abstract>We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are represented by a Lagrangian cost function J. In this work we propose an affine model for the relationship between J and thetas, based on several VQ encoders performing the map R M rarr {1,2,..., K}. A discrete source is obtained by partitioning images into 4x4 pixel blocks and extracting M = 4 principal components from each block. To design entropy-constrained VQs (ECVQs), we use the Generalized Lloyd Algorithm. To design simple interpolative VQs (IVQs), we consider only the simplest encoder: a linear transformation, followed by a layer of M scalar quantizers in parallel - the K cells of M.M are defined by a set of thresholds {t I ,... ,t T }. The T thresholds are obtained from a non-linear unconstrained optimization method based on the Nelder-Mead algorithm.</abstract><pub>IEEE</pub><doi>10.1109/DCC.2009.55</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1068-0314 |
ispartof | 2009 Data Compression Conference, 2009, p.466-466 |
issn | 1068-0314 2375-0359 |
language | eng |
recordid | cdi_ieee_primary_4976520 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis analog integrated circuit complexity Cost function Data compression Hardware Image coding Lagrangian functions Nonlinear distortion Partitioning algorithms Pixel Rate distortion theory rate-distortion-complexity vector quantization |
title | Affine Modeling for the Complexity of Vector Quantizers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Affine%20Modeling%20for%20the%20Complexity%20of%20Vector%20Quantizers&rft.btitle=2009%20Data%20Compression%20Conference&rft.au=Seraco,%20E.P.&rft.date=2009-03&rft.spage=466&rft.epage=466&rft.pages=466-466&rft.issn=1068-0314&rft.eissn=2375-0359&rft.isbn=1424437539&rft.isbn_list=9781424437535&rft.isbn_list=0769535925&rft.isbn_list=9780769535920&rft_id=info:doi/10.1109/DCC.2009.55&rft_dat=%3Cieee_6IE%3E4976520%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4976520&rfr_iscdi=true |