Affine Modeling for the Complexity of Vector Quantizers

We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seraco, E.P., Gomes, J.G.R.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue
container_start_page 466
container_title
container_volume
creator Seraco, E.P.
Gomes, J.G.R.C.
description We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are represented by a Lagrangian cost function J. In this work we propose an affine model for the relationship between J and thetas, based on several VQ encoders performing the map R M rarr {1,2,..., K}. A discrete source is obtained by partitioning images into 4x4 pixel blocks and extracting M = 4 principal components from each block. To design entropy-constrained VQs (ECVQs), we use the Generalized Lloyd Algorithm. To design simple interpolative VQs (IVQs), we consider only the simplest encoder: a linear transformation, followed by a layer of M scalar quantizers in parallel - the K cells of M.M are defined by a set of thresholds {t I ,... ,t T }. The T thresholds are obtained from a non-linear unconstrained optimization method based on the Nelder-Mead algorithm.
doi_str_mv 10.1109/DCC.2009.55
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4976520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4976520</ieee_id><sourcerecordid>4976520</sourcerecordid><originalsourceid>FETCH-LOGICAL-i160t-c7ad31ef426832b665477f99f7b536501c6179dbc32def38c8a42414eebd680e3</originalsourceid><addsrcrecordid>eNotjktLw0AUhQcfYFpduXQzfyDx3nlmliVaFSoiqNuSzNzRkTQpSQTrrzegq8Ph4zscxi4RCkRw1zdVVQgAV2h9xDIhrc5BanfMFqiEUnOX7oRlCKacAaozthjHT4DZMZgxu4oxdcQf-0Bt6t557Ac-fRCv-t2-pe80HXgf-Rv5aQbPX3U3pR8axnN2Gut2pIv_XLLX9e1LdZ9vnu4eqtUmT2hgyr2tg0SKSphSisYYrayNzkXbaGk0oDdoXWi8FIGiLH1Zz69RETXBlEByya7-dhMRbfdD2tXDYaucNVqA_AVyCkWP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Affine Modeling for the Complexity of Vector Quantizers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seraco, E.P. ; Gomes, J.G.R.C.</creator><creatorcontrib>Seraco, E.P. ; Gomes, J.G.R.C.</creatorcontrib><description>We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are represented by a Lagrangian cost function J. In this work we propose an affine model for the relationship between J and thetas, based on several VQ encoders performing the map R M rarr {1,2,..., K}. A discrete source is obtained by partitioning images into 4x4 pixel blocks and extracting M = 4 principal components from each block. To design entropy-constrained VQs (ECVQs), we use the Generalized Lloyd Algorithm. To design simple interpolative VQs (IVQs), we consider only the simplest encoder: a linear transformation, followed by a layer of M scalar quantizers in parallel - the K cells of M.M are defined by a set of thresholds {t I ,... ,t T }. The T thresholds are obtained from a non-linear unconstrained optimization method based on the Nelder-Mead algorithm.</description><identifier>ISSN: 1068-0314</identifier><identifier>ISBN: 1424437539</identifier><identifier>ISBN: 9781424437535</identifier><identifier>ISBN: 0769535925</identifier><identifier>ISBN: 9780769535920</identifier><identifier>EISSN: 2375-0359</identifier><identifier>DOI: 10.1109/DCC.2009.55</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; analog integrated circuit ; complexity ; Cost function ; Data compression ; Hardware ; Image coding ; Lagrangian functions ; Nonlinear distortion ; Partitioning algorithms ; Pixel ; Rate distortion theory ; rate-distortion-complexity ; vector quantization</subject><ispartof>2009 Data Compression Conference, 2009, p.466-466</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4976520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4976520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seraco, E.P.</creatorcontrib><creatorcontrib>Gomes, J.G.R.C.</creatorcontrib><title>Affine Modeling for the Complexity of Vector Quantizers</title><title>2009 Data Compression Conference</title><addtitle>DCC</addtitle><description>We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are represented by a Lagrangian cost function J. In this work we propose an affine model for the relationship between J and thetas, based on several VQ encoders performing the map R M rarr {1,2,..., K}. A discrete source is obtained by partitioning images into 4x4 pixel blocks and extracting M = 4 principal components from each block. To design entropy-constrained VQs (ECVQs), we use the Generalized Lloyd Algorithm. To design simple interpolative VQs (IVQs), we consider only the simplest encoder: a linear transformation, followed by a layer of M scalar quantizers in parallel - the K cells of M.M are defined by a set of thresholds {t I ,... ,t T }. The T thresholds are obtained from a non-linear unconstrained optimization method based on the Nelder-Mead algorithm.</description><subject>Algorithm design and analysis</subject><subject>analog integrated circuit</subject><subject>complexity</subject><subject>Cost function</subject><subject>Data compression</subject><subject>Hardware</subject><subject>Image coding</subject><subject>Lagrangian functions</subject><subject>Nonlinear distortion</subject><subject>Partitioning algorithms</subject><subject>Pixel</subject><subject>Rate distortion theory</subject><subject>rate-distortion-complexity</subject><subject>vector quantization</subject><issn>1068-0314</issn><issn>2375-0359</issn><isbn>1424437539</isbn><isbn>9781424437535</isbn><isbn>0769535925</isbn><isbn>9780769535920</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjktLw0AUhQcfYFpduXQzfyDx3nlmliVaFSoiqNuSzNzRkTQpSQTrrzegq8Ph4zscxi4RCkRw1zdVVQgAV2h9xDIhrc5BanfMFqiEUnOX7oRlCKacAaozthjHT4DZMZgxu4oxdcQf-0Bt6t557Ac-fRCv-t2-pe80HXgf-Rv5aQbPX3U3pR8axnN2Gut2pIv_XLLX9e1LdZ9vnu4eqtUmT2hgyr2tg0SKSphSisYYrayNzkXbaGk0oDdoXWi8FIGiLH1Zz69RETXBlEByya7-dhMRbfdD2tXDYaucNVqA_AVyCkWP</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Seraco, E.P.</creator><creator>Gomes, J.G.R.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Affine Modeling for the Complexity of Vector Quantizers</title><author>Seraco, E.P. ; Gomes, J.G.R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i160t-c7ad31ef426832b665477f99f7b536501c6179dbc32def38c8a42414eebd680e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithm design and analysis</topic><topic>analog integrated circuit</topic><topic>complexity</topic><topic>Cost function</topic><topic>Data compression</topic><topic>Hardware</topic><topic>Image coding</topic><topic>Lagrangian functions</topic><topic>Nonlinear distortion</topic><topic>Partitioning algorithms</topic><topic>Pixel</topic><topic>Rate distortion theory</topic><topic>rate-distortion-complexity</topic><topic>vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Seraco, E.P.</creatorcontrib><creatorcontrib>Gomes, J.G.R.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seraco, E.P.</au><au>Gomes, J.G.R.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Affine Modeling for the Complexity of Vector Quantizers</atitle><btitle>2009 Data Compression Conference</btitle><stitle>DCC</stitle><date>2009-03</date><risdate>2009</risdate><spage>466</spage><epage>466</epage><pages>466-466</pages><issn>1068-0314</issn><eissn>2375-0359</eissn><isbn>1424437539</isbn><isbn>9781424437535</isbn><isbn>0769535925</isbn><isbn>9780769535920</isbn><abstract>We use a scalar function thetas to describe the complexity of data compression systems based on vector quantizers (VQs). This function is associated with the analog hardware implementation of a VQ, as done for example in focal-plane image compression systems. The rate and distortion of a VQ are represented by a Lagrangian cost function J. In this work we propose an affine model for the relationship between J and thetas, based on several VQ encoders performing the map R M rarr {1,2,..., K}. A discrete source is obtained by partitioning images into 4x4 pixel blocks and extracting M = 4 principal components from each block. To design entropy-constrained VQs (ECVQs), we use the Generalized Lloyd Algorithm. To design simple interpolative VQs (IVQs), we consider only the simplest encoder: a linear transformation, followed by a layer of M scalar quantizers in parallel - the K cells of M.M are defined by a set of thresholds {t I ,... ,t T }. The T thresholds are obtained from a non-linear unconstrained optimization method based on the Nelder-Mead algorithm.</abstract><pub>IEEE</pub><doi>10.1109/DCC.2009.55</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1068-0314
ispartof 2009 Data Compression Conference, 2009, p.466-466
issn 1068-0314
2375-0359
language eng
recordid cdi_ieee_primary_4976520
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
analog integrated circuit
complexity
Cost function
Data compression
Hardware
Image coding
Lagrangian functions
Nonlinear distortion
Partitioning algorithms
Pixel
Rate distortion theory
rate-distortion-complexity
vector quantization
title Affine Modeling for the Complexity of Vector Quantizers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Affine%20Modeling%20for%20the%20Complexity%20of%20Vector%20Quantizers&rft.btitle=2009%20Data%20Compression%20Conference&rft.au=Seraco,%20E.P.&rft.date=2009-03&rft.spage=466&rft.epage=466&rft.pages=466-466&rft.issn=1068-0314&rft.eissn=2375-0359&rft.isbn=1424437539&rft.isbn_list=9781424437535&rft.isbn_list=0769535925&rft.isbn_list=9780769535920&rft_id=info:doi/10.1109/DCC.2009.55&rft_dat=%3Cieee_6IE%3E4976520%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4976520&rfr_iscdi=true