Automatic Segmentation of Rotational X-Ray Images for Anatomic Intra-Procedural Surface Generation in Atrial Fibrillation Ablation Procedures
Since the introduction of 3-D rotational X-ray imaging, protocols for 3-D rotational coronary artery imaging have become widely available in routine clinical practice. Intra-procedural cardiac imaging in a computed tomography (CT)-like fashion has been particularly compelling due to the reduction of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2010-02, Vol.29 (2), p.260-272 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | 2 |
container_start_page | 260 |
container_title | IEEE transactions on medical imaging |
container_volume | 29 |
creator | Manzke, R. Meyer, C. Ecabert, O. Peters, J. Noordhoek, N.J. Thiagalingam, A. Reddy, V.Y. Chan, R.C. Weese, J. |
description | Since the introduction of 3-D rotational X-ray imaging, protocols for 3-D rotational coronary artery imaging have become widely available in routine clinical practice. Intra-procedural cardiac imaging in a computed tomography (CT)-like fashion has been particularly compelling due to the reduction of clinical overhead and ability to characterize anatomy at the time of intervention. We previously introduced a clinically feasible approach for imaging the left atrium and pulmonary veins (LAPVs) with short contrast bolus injections and scan times of ~ 4-10 s. The resulting data have sufficient image quality for intra-procedural use during electro-anatomic mapping (EAM) and interventional guidance in atrial fibrillation (AF) ablation procedures. In this paper, we present a novel technique to intra-procedural surface generation which integrates fully-automated segmentation of the LAPVs for guidance in AF ablation interventions. Contrast-enhanced rotational X-ray angiography (3-D RA) acquisitions in combination with filtered-back-projection-based reconstruction allows for volumetric interrogation of LAPV anatomy in near-real-time. An automatic model-based segmentation algorithm allows for fast and accurate LAPV mesh generation despite the challenges posed by image quality; relative to pre-procedural cardiac CT/MR, 3-D RA images suffer from more artifacts and reduced signal-to-noise. We validate our integrated method by comparing (1) automatic and manual segmentations of intra-procedural 3-D RA data, (2) automatic segmentations of intra-procedural 3-D RA and pre-procedural CT/MR data, and (3) intra-procedural EAM point cloud data with automatic segmentations of 3-D RA and CT/MR data. Our validation results for automatically segmented intra-procedural 3-D RA data show average segmentation errors of (1) ~ 1.3 mm compared with manual 3-D RA segmentations (2) ~ 2.3 mm compared with automatic segmentation of pre-procedural CT/MR data and (3) ~ 2.1 mm compared with registered intra-procedural EAM point clouds. The overall experiments indicate that LAPV surfaces can be automatically segmented intra-procedurally from 3-D RA data with comparable quality relative to meshes derived from pre-procedural CT/MR. |
doi_str_mv | 10.1109/TMI.2009.2021946 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4967955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4967955</ieee_id><sourcerecordid>2289759791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-1b8dc2824d4ba2f08e820347dedbcf65e0562b6242178f6c7e24d14dd73bc1f63</originalsourceid><addsrcrecordid>eNqNks1q3TAQhUVpaW7S7guFIrrJyunoX1qa0KQXUlqSFLIzsjwODtdWKtmLPETfuQq-yaKbdCMNmu-cGdAh5AODE8bAfbn-vj3hAK4cnDmpX5ENU8pWXMmb12QD3NgKQPMDcpjzHQCTCtxbcsCBcWel2JA_9TLH0c9DoFd4O-I0lzpONPb0Mq6139Gb6tI_0O3obzHTPiZaT77Iimg7zclXP1MM2C2poFdL6n1Aeo4TptVrmGg9p6E0z4Y2Dbvd-ly3--JJjfkdedP7Xcb3-_uI_Dr7en36rbr4cb49rS-qICWbK9baLnDLZSdbz3uwaDkIaTrs2tBrhaA0bzWXnBnb62CwoEx2nRFtYL0WR-R49b1P8feCeW7GIQcsm00Yl9xYbYwUTtkXSSM155JZ9h-kMIZZ9fJ0I4STDKQr5Od_yLu4pPIjZUWlNWgpVIFghUKKOSfsm_s0jD49NAyax5g0JSbNY0yafUyK5NPed2lH7J4FT7kowMcVGBDxuS2dNk4p8Rd4X8FV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856606435</pqid></control><display><type>article</type><title>Automatic Segmentation of Rotational X-Ray Images for Anatomic Intra-Procedural Surface Generation in Atrial Fibrillation Ablation Procedures</title><source>IEEE Electronic Library (IEL)</source><creator>Manzke, R. ; Meyer, C. ; Ecabert, O. ; Peters, J. ; Noordhoek, N.J. ; Thiagalingam, A. ; Reddy, V.Y. ; Chan, R.C. ; Weese, J.</creator><creatorcontrib>Manzke, R. ; Meyer, C. ; Ecabert, O. ; Peters, J. ; Noordhoek, N.J. ; Thiagalingam, A. ; Reddy, V.Y. ; Chan, R.C. ; Weese, J.</creatorcontrib><description>Since the introduction of 3-D rotational X-ray imaging, protocols for 3-D rotational coronary artery imaging have become widely available in routine clinical practice. Intra-procedural cardiac imaging in a computed tomography (CT)-like fashion has been particularly compelling due to the reduction of clinical overhead and ability to characterize anatomy at the time of intervention. We previously introduced a clinically feasible approach for imaging the left atrium and pulmonary veins (LAPVs) with short contrast bolus injections and scan times of ~ 4-10 s. The resulting data have sufficient image quality for intra-procedural use during electro-anatomic mapping (EAM) and interventional guidance in atrial fibrillation (AF) ablation procedures. In this paper, we present a novel technique to intra-procedural surface generation which integrates fully-automated segmentation of the LAPVs for guidance in AF ablation interventions. Contrast-enhanced rotational X-ray angiography (3-D RA) acquisitions in combination with filtered-back-projection-based reconstruction allows for volumetric interrogation of LAPV anatomy in near-real-time. An automatic model-based segmentation algorithm allows for fast and accurate LAPV mesh generation despite the challenges posed by image quality; relative to pre-procedural cardiac CT/MR, 3-D RA images suffer from more artifacts and reduced signal-to-noise. We validate our integrated method by comparing (1) automatic and manual segmentations of intra-procedural 3-D RA data, (2) automatic segmentations of intra-procedural 3-D RA and pre-procedural CT/MR data, and (3) intra-procedural EAM point cloud data with automatic segmentations of 3-D RA and CT/MR data. Our validation results for automatically segmented intra-procedural 3-D RA data show average segmentation errors of (1) ~ 1.3 mm compared with manual 3-D RA segmentations (2) ~ 2.3 mm compared with automatic segmentation of pre-procedural CT/MR data and (3) ~ 2.1 mm compared with registered intra-procedural EAM point clouds. The overall experiments indicate that LAPV surfaces can be automatically segmented intra-procedurally from 3-D RA data with comparable quality relative to meshes derived from pre-procedural CT/MR.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2009.2021946</identifier><identifier>PMID: 20129843</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anatomy ; Arteries ; Atrial fibrillation ; Atrial Fibrillation - therapy ; Automatic segmentation ; cardiac electrophysiology ; Catheter Ablation - methods ; Clinical medicine ; Clouds ; Computed tomography ; Coronary Angiography - methods ; electro-anatomic mapping ; Heart Atria - diagnostic imaging ; Humans ; image processing ; Image Processing, Computer-Assisted - methods ; Image quality ; image reconstruction ; Image segmentation ; Imaging, Three-Dimensional ; interventional guidance ; left atrium ; Magnetic Resonance Imaging - methods ; Medical imaging ; model-based segmentation ; Optical imaging ; Protocols ; pulmonary veins ; Pulmonary Veins - diagnostic imaging ; Radiographic Image Enhancement - methods ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography, Interventional - methods ; reconstruction ; Reproducibility of Results ; rotational X-ray ; shape-constrained deformable models ; Tomography, X-Ray Computed - methods ; X-ray imaging</subject><ispartof>IEEE transactions on medical imaging, 2010-02, Vol.29 (2), p.260-272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-1b8dc2824d4ba2f08e820347dedbcf65e0562b6242178f6c7e24d14dd73bc1f63</citedby><cites>FETCH-LOGICAL-c441t-1b8dc2824d4ba2f08e820347dedbcf65e0562b6242178f6c7e24d14dd73bc1f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4967955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4967955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20129843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manzke, R.</creatorcontrib><creatorcontrib>Meyer, C.</creatorcontrib><creatorcontrib>Ecabert, O.</creatorcontrib><creatorcontrib>Peters, J.</creatorcontrib><creatorcontrib>Noordhoek, N.J.</creatorcontrib><creatorcontrib>Thiagalingam, A.</creatorcontrib><creatorcontrib>Reddy, V.Y.</creatorcontrib><creatorcontrib>Chan, R.C.</creatorcontrib><creatorcontrib>Weese, J.</creatorcontrib><title>Automatic Segmentation of Rotational X-Ray Images for Anatomic Intra-Procedural Surface Generation in Atrial Fibrillation Ablation Procedures</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Since the introduction of 3-D rotational X-ray imaging, protocols for 3-D rotational coronary artery imaging have become widely available in routine clinical practice. Intra-procedural cardiac imaging in a computed tomography (CT)-like fashion has been particularly compelling due to the reduction of clinical overhead and ability to characterize anatomy at the time of intervention. We previously introduced a clinically feasible approach for imaging the left atrium and pulmonary veins (LAPVs) with short contrast bolus injections and scan times of ~ 4-10 s. The resulting data have sufficient image quality for intra-procedural use during electro-anatomic mapping (EAM) and interventional guidance in atrial fibrillation (AF) ablation procedures. In this paper, we present a novel technique to intra-procedural surface generation which integrates fully-automated segmentation of the LAPVs for guidance in AF ablation interventions. Contrast-enhanced rotational X-ray angiography (3-D RA) acquisitions in combination with filtered-back-projection-based reconstruction allows for volumetric interrogation of LAPV anatomy in near-real-time. An automatic model-based segmentation algorithm allows for fast and accurate LAPV mesh generation despite the challenges posed by image quality; relative to pre-procedural cardiac CT/MR, 3-D RA images suffer from more artifacts and reduced signal-to-noise. We validate our integrated method by comparing (1) automatic and manual segmentations of intra-procedural 3-D RA data, (2) automatic segmentations of intra-procedural 3-D RA and pre-procedural CT/MR data, and (3) intra-procedural EAM point cloud data with automatic segmentations of 3-D RA and CT/MR data. Our validation results for automatically segmented intra-procedural 3-D RA data show average segmentation errors of (1) ~ 1.3 mm compared with manual 3-D RA segmentations (2) ~ 2.3 mm compared with automatic segmentation of pre-procedural CT/MR data and (3) ~ 2.1 mm compared with registered intra-procedural EAM point clouds. The overall experiments indicate that LAPV surfaces can be automatically segmented intra-procedurally from 3-D RA data with comparable quality relative to meshes derived from pre-procedural CT/MR.</description><subject>Anatomy</subject><subject>Arteries</subject><subject>Atrial fibrillation</subject><subject>Atrial Fibrillation - therapy</subject><subject>Automatic segmentation</subject><subject>cardiac electrophysiology</subject><subject>Catheter Ablation - methods</subject><subject>Clinical medicine</subject><subject>Clouds</subject><subject>Computed tomography</subject><subject>Coronary Angiography - methods</subject><subject>electro-anatomic mapping</subject><subject>Heart Atria - diagnostic imaging</subject><subject>Humans</subject><subject>image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>image reconstruction</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional</subject><subject>interventional guidance</subject><subject>left atrium</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>model-based segmentation</subject><subject>Optical imaging</subject><subject>Protocols</subject><subject>pulmonary veins</subject><subject>Pulmonary Veins - diagnostic imaging</subject><subject>Radiographic Image Enhancement - methods</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography, Interventional - methods</subject><subject>reconstruction</subject><subject>Reproducibility of Results</subject><subject>rotational X-ray</subject><subject>shape-constrained deformable models</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>X-ray imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNks1q3TAQhUVpaW7S7guFIrrJyunoX1qa0KQXUlqSFLIzsjwODtdWKtmLPETfuQq-yaKbdCMNmu-cGdAh5AODE8bAfbn-vj3hAK4cnDmpX5ENU8pWXMmb12QD3NgKQPMDcpjzHQCTCtxbcsCBcWel2JA_9TLH0c9DoFd4O-I0lzpONPb0Mq6139Gb6tI_0O3obzHTPiZaT77Iimg7zclXP1MM2C2poFdL6n1Aeo4TptVrmGg9p6E0z4Y2Dbvd-ly3--JJjfkdedP7Xcb3-_uI_Dr7en36rbr4cb49rS-qICWbK9baLnDLZSdbz3uwaDkIaTrs2tBrhaA0bzWXnBnb62CwoEx2nRFtYL0WR-R49b1P8feCeW7GIQcsm00Yl9xYbYwUTtkXSSM155JZ9h-kMIZZ9fJ0I4STDKQr5Od_yLu4pPIjZUWlNWgpVIFghUKKOSfsm_s0jD49NAyax5g0JSbNY0yafUyK5NPed2lH7J4FT7kowMcVGBDxuS2dNk4p8Rd4X8FV</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Manzke, R.</creator><creator>Meyer, C.</creator><creator>Ecabert, O.</creator><creator>Peters, J.</creator><creator>Noordhoek, N.J.</creator><creator>Thiagalingam, A.</creator><creator>Reddy, V.Y.</creator><creator>Chan, R.C.</creator><creator>Weese, J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201002</creationdate><title>Automatic Segmentation of Rotational X-Ray Images for Anatomic Intra-Procedural Surface Generation in Atrial Fibrillation Ablation Procedures</title><author>Manzke, R. ; Meyer, C. ; Ecabert, O. ; Peters, J. ; Noordhoek, N.J. ; Thiagalingam, A. ; Reddy, V.Y. ; Chan, R.C. ; Weese, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-1b8dc2824d4ba2f08e820347dedbcf65e0562b6242178f6c7e24d14dd73bc1f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anatomy</topic><topic>Arteries</topic><topic>Atrial fibrillation</topic><topic>Atrial Fibrillation - therapy</topic><topic>Automatic segmentation</topic><topic>cardiac electrophysiology</topic><topic>Catheter Ablation - methods</topic><topic>Clinical medicine</topic><topic>Clouds</topic><topic>Computed tomography</topic><topic>Coronary Angiography - methods</topic><topic>electro-anatomic mapping</topic><topic>Heart Atria - diagnostic imaging</topic><topic>Humans</topic><topic>image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>image reconstruction</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional</topic><topic>interventional guidance</topic><topic>left atrium</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>model-based segmentation</topic><topic>Optical imaging</topic><topic>Protocols</topic><topic>pulmonary veins</topic><topic>Pulmonary Veins - diagnostic imaging</topic><topic>Radiographic Image Enhancement - methods</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography, Interventional - methods</topic><topic>reconstruction</topic><topic>Reproducibility of Results</topic><topic>rotational X-ray</topic><topic>shape-constrained deformable models</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Manzke, R.</creatorcontrib><creatorcontrib>Meyer, C.</creatorcontrib><creatorcontrib>Ecabert, O.</creatorcontrib><creatorcontrib>Peters, J.</creatorcontrib><creatorcontrib>Noordhoek, N.J.</creatorcontrib><creatorcontrib>Thiagalingam, A.</creatorcontrib><creatorcontrib>Reddy, V.Y.</creatorcontrib><creatorcontrib>Chan, R.C.</creatorcontrib><creatorcontrib>Weese, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manzke, R.</au><au>Meyer, C.</au><au>Ecabert, O.</au><au>Peters, J.</au><au>Noordhoek, N.J.</au><au>Thiagalingam, A.</au><au>Reddy, V.Y.</au><au>Chan, R.C.</au><au>Weese, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Segmentation of Rotational X-Ray Images for Anatomic Intra-Procedural Surface Generation in Atrial Fibrillation Ablation Procedures</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2010-02</date><risdate>2010</risdate><volume>29</volume><issue>2</issue><spage>260</spage><epage>272</epage><pages>260-272</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Since the introduction of 3-D rotational X-ray imaging, protocols for 3-D rotational coronary artery imaging have become widely available in routine clinical practice. Intra-procedural cardiac imaging in a computed tomography (CT)-like fashion has been particularly compelling due to the reduction of clinical overhead and ability to characterize anatomy at the time of intervention. We previously introduced a clinically feasible approach for imaging the left atrium and pulmonary veins (LAPVs) with short contrast bolus injections and scan times of ~ 4-10 s. The resulting data have sufficient image quality for intra-procedural use during electro-anatomic mapping (EAM) and interventional guidance in atrial fibrillation (AF) ablation procedures. In this paper, we present a novel technique to intra-procedural surface generation which integrates fully-automated segmentation of the LAPVs for guidance in AF ablation interventions. Contrast-enhanced rotational X-ray angiography (3-D RA) acquisitions in combination with filtered-back-projection-based reconstruction allows for volumetric interrogation of LAPV anatomy in near-real-time. An automatic model-based segmentation algorithm allows for fast and accurate LAPV mesh generation despite the challenges posed by image quality; relative to pre-procedural cardiac CT/MR, 3-D RA images suffer from more artifacts and reduced signal-to-noise. We validate our integrated method by comparing (1) automatic and manual segmentations of intra-procedural 3-D RA data, (2) automatic segmentations of intra-procedural 3-D RA and pre-procedural CT/MR data, and (3) intra-procedural EAM point cloud data with automatic segmentations of 3-D RA and CT/MR data. Our validation results for automatically segmented intra-procedural 3-D RA data show average segmentation errors of (1) ~ 1.3 mm compared with manual 3-D RA segmentations (2) ~ 2.3 mm compared with automatic segmentation of pre-procedural CT/MR data and (3) ~ 2.1 mm compared with registered intra-procedural EAM point clouds. The overall experiments indicate that LAPV surfaces can be automatically segmented intra-procedurally from 3-D RA data with comparable quality relative to meshes derived from pre-procedural CT/MR.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20129843</pmid><doi>10.1109/TMI.2009.2021946</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2010-02, Vol.29 (2), p.260-272 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_4967955 |
source | IEEE Electronic Library (IEL) |
subjects | Anatomy Arteries Atrial fibrillation Atrial Fibrillation - therapy Automatic segmentation cardiac electrophysiology Catheter Ablation - methods Clinical medicine Clouds Computed tomography Coronary Angiography - methods electro-anatomic mapping Heart Atria - diagnostic imaging Humans image processing Image Processing, Computer-Assisted - methods Image quality image reconstruction Image segmentation Imaging, Three-Dimensional interventional guidance left atrium Magnetic Resonance Imaging - methods Medical imaging model-based segmentation Optical imaging Protocols pulmonary veins Pulmonary Veins - diagnostic imaging Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Radiography, Interventional - methods reconstruction Reproducibility of Results rotational X-ray shape-constrained deformable models Tomography, X-Ray Computed - methods X-ray imaging |
title | Automatic Segmentation of Rotational X-Ray Images for Anatomic Intra-Procedural Surface Generation in Atrial Fibrillation Ablation Procedures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Segmentation%20of%20Rotational%20X-Ray%20Images%20for%20Anatomic%20Intra-Procedural%20Surface%20Generation%20in%20Atrial%20Fibrillation%20Ablation%20Procedures&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Manzke,%20R.&rft.date=2010-02&rft.volume=29&rft.issue=2&rft.spage=260&rft.epage=272&rft.pages=260-272&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2009.2021946&rft_dat=%3Cproquest_RIE%3E2289759791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856606435&rft_id=info:pmid/20129843&rft_ieee_id=4967955&rfr_iscdi=true |