A GMM supervector Kernel with the Bhattacharyya distance for SVM based speaker recognition

Gaussian mixture model (GMM) supervector is one of the effective techniques in text independent speaker recognition. In our previous work, we introduce the GMM-UBM mean interval (GUMI) concept based on the Bhattacharyya distance. Subsequently GUMI kernel was successfully used in conjunction with sup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chang Huai You, Kong Aik Lee, Haizhou Li
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4224
container_issue
container_start_page 4221
container_title
container_volume
creator Chang Huai You
Kong Aik Lee
Haizhou Li
description Gaussian mixture model (GMM) supervector is one of the effective techniques in text independent speaker recognition. In our previous work, we introduce the GMM-UBM mean interval (GUMI) concept based on the Bhattacharyya distance. Subsequently GUMI kernel was successfully used in conjunction with support vector machine (SVM) for speaker recognition. Besides the first order statistics, it is generally believed that speaker cues are also partly conveyed by second order statistics. In this paper, we extend the Bhattacharyya-based SVM kernel by constructing the supervector with the mean statistical vector and the covariance statistical vector. Comparing with the Kullback-Leibler (KL) kernel, we demonstrate the effectiveness of the new kernel on the 2006 National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) dataset.
doi_str_mv 10.1109/ICASSP.2009.4960560
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4960560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4960560</ieee_id><sourcerecordid>4960560</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c95f32ec65bda24d32acf6953ddf96817f6dd64d822e1747088dcc3be4e2366d3</originalsourceid><addsrcrecordid>eNpVUM1OwzAYC38S1dgT7JIXaMl_m-OYYEOsAmmAEJcpS77SwOiqJID29lRiF3zxwZZlG6EJJQWlRF_ezqar1UPBCNGF0IpIRY7QWJcVFUwIxqWQxyhjvNQ51eTl5J_Gq1OUUclIrqjQ52gc4zsZICSnQmbodYrndY3jVw_hG2zaBXwHoYMt_vGpxakFfNWalIxtTdjvDXY-JtNZwM1gXT3XeGMiOBx7MB8QcAC7e-t88rvuAp01ZhthfOARerq5fpwt8uX9fNi0zD0tZcqtlg1nYJXcOMOE48zYRmnJnWu0qmjZKOeUcBVjQEtRkqpy1vINCGBcKcdHaPKX6wFg3Qf_OTRdH57ivyivWQM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A GMM supervector Kernel with the Bhattacharyya distance for SVM based speaker recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chang Huai You ; Kong Aik Lee ; Haizhou Li</creator><creatorcontrib>Chang Huai You ; Kong Aik Lee ; Haizhou Li</creatorcontrib><description>Gaussian mixture model (GMM) supervector is one of the effective techniques in text independent speaker recognition. In our previous work, we introduce the GMM-UBM mean interval (GUMI) concept based on the Bhattacharyya distance. Subsequently GUMI kernel was successfully used in conjunction with support vector machine (SVM) for speaker recognition. Besides the first order statistics, it is generally believed that speaker cues are also partly conveyed by second order statistics. In this paper, we extend the Bhattacharyya-based SVM kernel by constructing the supervector with the mean statistical vector and the covariance statistical vector. Comparing with the Kullback-Leibler (KL) kernel, we demonstrate the effectiveness of the new kernel on the 2006 National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) dataset.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4960560</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Distance measurement ; Error analysis ; Gaussian Mixture Model ; Kernel ; NIST ; NIST Evaluation ; Speaker recognition ; Speaker Verification ; Speech ; Statistics ; Supervector ; Support Vector Machine ; Support vector machines ; Testing</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.4221-4224</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4960560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4960560$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang Huai You</creatorcontrib><creatorcontrib>Kong Aik Lee</creatorcontrib><creatorcontrib>Haizhou Li</creatorcontrib><title>A GMM supervector Kernel with the Bhattacharyya distance for SVM based speaker recognition</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Gaussian mixture model (GMM) supervector is one of the effective techniques in text independent speaker recognition. In our previous work, we introduce the GMM-UBM mean interval (GUMI) concept based on the Bhattacharyya distance. Subsequently GUMI kernel was successfully used in conjunction with support vector machine (SVM) for speaker recognition. Besides the first order statistics, it is generally believed that speaker cues are also partly conveyed by second order statistics. In this paper, we extend the Bhattacharyya-based SVM kernel by constructing the supervector with the mean statistical vector and the covariance statistical vector. Comparing with the Kullback-Leibler (KL) kernel, we demonstrate the effectiveness of the new kernel on the 2006 National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) dataset.</description><subject>Cost function</subject><subject>Distance measurement</subject><subject>Error analysis</subject><subject>Gaussian Mixture Model</subject><subject>Kernel</subject><subject>NIST</subject><subject>NIST Evaluation</subject><subject>Speaker recognition</subject><subject>Speaker Verification</subject><subject>Speech</subject><subject>Statistics</subject><subject>Supervector</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Testing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1OwzAYC38S1dgT7JIXaMl_m-OYYEOsAmmAEJcpS77SwOiqJID29lRiF3zxwZZlG6EJJQWlRF_ezqar1UPBCNGF0IpIRY7QWJcVFUwIxqWQxyhjvNQ51eTl5J_Gq1OUUclIrqjQ52gc4zsZICSnQmbodYrndY3jVw_hG2zaBXwHoYMt_vGpxakFfNWalIxtTdjvDXY-JtNZwM1gXT3XeGMiOBx7MB8QcAC7e-t88rvuAp01ZhthfOARerq5fpwt8uX9fNi0zD0tZcqtlg1nYJXcOMOE48zYRmnJnWu0qmjZKOeUcBVjQEtRkqpy1vINCGBcKcdHaPKX6wFg3Qf_OTRdH57ivyivWQM</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Chang Huai You</creator><creator>Kong Aik Lee</creator><creator>Haizhou Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200904</creationdate><title>A GMM supervector Kernel with the Bhattacharyya distance for SVM based speaker recognition</title><author>Chang Huai You ; Kong Aik Lee ; Haizhou Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c95f32ec65bda24d32acf6953ddf96817f6dd64d822e1747088dcc3be4e2366d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cost function</topic><topic>Distance measurement</topic><topic>Error analysis</topic><topic>Gaussian Mixture Model</topic><topic>Kernel</topic><topic>NIST</topic><topic>NIST Evaluation</topic><topic>Speaker recognition</topic><topic>Speaker Verification</topic><topic>Speech</topic><topic>Statistics</topic><topic>Supervector</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang Huai You</creatorcontrib><creatorcontrib>Kong Aik Lee</creatorcontrib><creatorcontrib>Haizhou Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang Huai You</au><au>Kong Aik Lee</au><au>Haizhou Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A GMM supervector Kernel with the Bhattacharyya distance for SVM based speaker recognition</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-04</date><risdate>2009</risdate><spage>4221</spage><epage>4224</epage><pages>4221-4224</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>Gaussian mixture model (GMM) supervector is one of the effective techniques in text independent speaker recognition. In our previous work, we introduce the GMM-UBM mean interval (GUMI) concept based on the Bhattacharyya distance. Subsequently GUMI kernel was successfully used in conjunction with support vector machine (SVM) for speaker recognition. Besides the first order statistics, it is generally believed that speaker cues are also partly conveyed by second order statistics. In this paper, we extend the Bhattacharyya-based SVM kernel by constructing the supervector with the mean statistical vector and the covariance statistical vector. Comparing with the Kullback-Leibler (KL) kernel, we demonstrate the effectiveness of the new kernel on the 2006 National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4960560</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.4221-4224
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4960560
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cost function
Distance measurement
Error analysis
Gaussian Mixture Model
Kernel
NIST
NIST Evaluation
Speaker recognition
Speaker Verification
Speech
Statistics
Supervector
Support Vector Machine
Support vector machines
Testing
title A GMM supervector Kernel with the Bhattacharyya distance for SVM based speaker recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20GMM%20supervector%20Kernel%20with%20the%20Bhattacharyya%20distance%20for%20SVM%20based%20speaker%20recognition&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Chang%20Huai%20You&rft.date=2009-04&rft.spage=4221&rft.epage=4224&rft.pages=4221-4224&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4960560&rft_dat=%3Cieee_6IE%3E4960560%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4960560&rfr_iscdi=true