On GMM Kalman predictive coding of LSFS for packet loss

Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Subasingha, S., Murthi, M.N., Andersen, S.V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4108
container_issue
container_start_page 4105
container_title
container_volume
creator Subasingha, S.
Murthi, M.N.
Andersen, S.V.
description Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specifically designed for operation in packet loss conditions. In this paper, we demonstrate an approach to the the design of GMM-based predictive coding for packet loss channels. In particular, we show how a stationary GMM Kalman predictive coder can be modified to obtain a set of encoding and decoding modes, each with different Kalman gains. This approach leads to more robust performance of predictive coding of LSFs in packet loss conditions, as the coder mismatch between the encoder and decoder are minimized. Simulation results show that this Robust GMM Kalman predictive coder performs better than other baseline GMM predictive coders with no increase in complexity. To the best of our knowledge, no previous work has specifically examined the design of GMM predictive coders for packet loss conditions.
doi_str_mv 10.1109/ICASSP.2009.4960531
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4960531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4960531</ieee_id><sourcerecordid>4960531</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1ee6fe762e35bebe19e162468c26a6d45aef147376f17871a4a90e4aa014faa63</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhcc_sNQ-QTfzAolzZ-7MZJZSbCu2VIiCu3Kb3JFom4QkCL69AbvxbL7FgY_DEWIOKgVQ4f5p8ZDnL6lWKqQYnLIGLsQs-AxQI2pj0V6KiTY-JBDU-9W_zmTXYgJWq8QBhlsx6_tPNQZHC9qJ8LtarrZb-UzHE9Wy7bisiqH6Zlk0ZVV_yCbKTb7MZWw62VLxxYM8Nn1_J24iHXuenTkVb8vH18U62exW4-BNUoG3QwLMLrJ3mo098IEhMDiNLiu0I1eiJY6A3ngXwWceCCkoRiIFGImcmYr5n7di5n3bVSfqfvbnG8wvaXRKuw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On GMM Kalman predictive coding of LSFS for packet loss</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Subasingha, S. ; Murthi, M.N. ; Andersen, S.V.</creator><creatorcontrib>Subasingha, S. ; Murthi, M.N. ; Andersen, S.V.</creatorcontrib><description>Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specifically designed for operation in packet loss conditions. In this paper, we demonstrate an approach to the the design of GMM-based predictive coding for packet loss channels. In particular, we show how a stationary GMM Kalman predictive coder can be modified to obtain a set of encoding and decoding modes, each with different Kalman gains. This approach leads to more robust performance of predictive coding of LSFs in packet loss conditions, as the coder mismatch between the encoder and decoder are minimized. Simulation results show that this Robust GMM Kalman predictive coder performs better than other baseline GMM predictive coders with no increase in complexity. To the best of our knowledge, no previous work has specifically examined the design of GMM predictive coders for packet loss conditions.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4960531</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decoding ; Filtering ; Frequency ; GMM ; Kalman filtering ; Kalman filters ; Performance loss ; Predictive coding ; Predictive models ; Robustness ; Speech coding ; Vector quantization</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.4105-4108</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4960531$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4960531$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Subasingha, S.</creatorcontrib><creatorcontrib>Murthi, M.N.</creatorcontrib><creatorcontrib>Andersen, S.V.</creatorcontrib><title>On GMM Kalman predictive coding of LSFS for packet loss</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specifically designed for operation in packet loss conditions. In this paper, we demonstrate an approach to the the design of GMM-based predictive coding for packet loss channels. In particular, we show how a stationary GMM Kalman predictive coder can be modified to obtain a set of encoding and decoding modes, each with different Kalman gains. This approach leads to more robust performance of predictive coding of LSFs in packet loss conditions, as the coder mismatch between the encoder and decoder are minimized. Simulation results show that this Robust GMM Kalman predictive coder performs better than other baseline GMM predictive coders with no increase in complexity. To the best of our knowledge, no previous work has specifically examined the design of GMM predictive coders for packet loss conditions.</description><subject>Decoding</subject><subject>Filtering</subject><subject>Frequency</subject><subject>GMM</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Performance loss</subject><subject>Predictive coding</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Speech coding</subject><subject>Vector quantization</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AUhcc_sNQ-QTfzAolzZ-7MZJZSbCu2VIiCu3Kb3JFom4QkCL69AbvxbL7FgY_DEWIOKgVQ4f5p8ZDnL6lWKqQYnLIGLsQs-AxQI2pj0V6KiTY-JBDU-9W_zmTXYgJWq8QBhlsx6_tPNQZHC9qJ8LtarrZb-UzHE9Wy7bisiqH6Zlk0ZVV_yCbKTb7MZWw62VLxxYM8Nn1_J24iHXuenTkVb8vH18U62exW4-BNUoG3QwLMLrJ3mo098IEhMDiNLiu0I1eiJY6A3ngXwWceCCkoRiIFGImcmYr5n7di5n3bVSfqfvbnG8wvaXRKuw</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Subasingha, S.</creator><creator>Murthi, M.N.</creator><creator>Andersen, S.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200904</creationdate><title>On GMM Kalman predictive coding of LSFS for packet loss</title><author>Subasingha, S. ; Murthi, M.N. ; Andersen, S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1ee6fe762e35bebe19e162468c26a6d45aef147376f17871a4a90e4aa014faa63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Decoding</topic><topic>Filtering</topic><topic>Frequency</topic><topic>GMM</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Performance loss</topic><topic>Predictive coding</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Speech coding</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Subasingha, S.</creatorcontrib><creatorcontrib>Murthi, M.N.</creatorcontrib><creatorcontrib>Andersen, S.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Subasingha, S.</au><au>Murthi, M.N.</au><au>Andersen, S.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On GMM Kalman predictive coding of LSFS for packet loss</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-04</date><risdate>2009</risdate><spage>4105</spage><epage>4108</epage><pages>4105-4108</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specifically designed for operation in packet loss conditions. In this paper, we demonstrate an approach to the the design of GMM-based predictive coding for packet loss channels. In particular, we show how a stationary GMM Kalman predictive coder can be modified to obtain a set of encoding and decoding modes, each with different Kalman gains. This approach leads to more robust performance of predictive coding of LSFs in packet loss conditions, as the coder mismatch between the encoder and decoder are minimized. Simulation results show that this Robust GMM Kalman predictive coder performs better than other baseline GMM predictive coders with no increase in complexity. To the best of our knowledge, no previous work has specifically examined the design of GMM predictive coders for packet loss conditions.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4960531</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.4105-4108
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4960531
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Decoding
Filtering
Frequency
GMM
Kalman filtering
Kalman filters
Performance loss
Predictive coding
Predictive models
Robustness
Speech coding
Vector quantization
title On GMM Kalman predictive coding of LSFS for packet loss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20GMM%20Kalman%20predictive%20coding%20of%20LSFS%20for%20packet%20loss&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Subasingha,%20S.&rft.date=2009-04&rft.spage=4105&rft.epage=4108&rft.pages=4105-4108&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4960531&rft_dat=%3Cieee_6IE%3E4960531%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4960531&rfr_iscdi=true