On GMM Kalman predictive coding of LSFS for packet loss
Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specific...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4108 |
---|---|
container_issue | |
container_start_page | 4105 |
container_title | |
container_volume | |
creator | Subasingha, S. Murthi, M.N. Andersen, S.V. |
description | Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specifically designed for operation in packet loss conditions. In this paper, we demonstrate an approach to the the design of GMM-based predictive coding for packet loss channels. In particular, we show how a stationary GMM Kalman predictive coder can be modified to obtain a set of encoding and decoding modes, each with different Kalman gains. This approach leads to more robust performance of predictive coding of LSFs in packet loss conditions, as the coder mismatch between the encoder and decoder are minimized. Simulation results show that this Robust GMM Kalman predictive coder performs better than other baseline GMM predictive coders with no increase in complexity. To the best of our knowledge, no previous work has specifically examined the design of GMM predictive coders for packet loss conditions. |
doi_str_mv | 10.1109/ICASSP.2009.4960531 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4960531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4960531</ieee_id><sourcerecordid>4960531</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1ee6fe762e35bebe19e162468c26a6d45aef147376f17871a4a90e4aa014faa63</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhcc_sNQ-QTfzAolzZ-7MZJZSbCu2VIiCu3Kb3JFom4QkCL69AbvxbL7FgY_DEWIOKgVQ4f5p8ZDnL6lWKqQYnLIGLsQs-AxQI2pj0V6KiTY-JBDU-9W_zmTXYgJWq8QBhlsx6_tPNQZHC9qJ8LtarrZb-UzHE9Wy7bisiqH6Zlk0ZVV_yCbKTb7MZWw62VLxxYM8Nn1_J24iHXuenTkVb8vH18U62exW4-BNUoG3QwLMLrJ3mo098IEhMDiNLiu0I1eiJY6A3ngXwWceCCkoRiIFGImcmYr5n7di5n3bVSfqfvbnG8wvaXRKuw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On GMM Kalman predictive coding of LSFS for packet loss</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Subasingha, S. ; Murthi, M.N. ; Andersen, S.V.</creator><creatorcontrib>Subasingha, S. ; Murthi, M.N. ; Andersen, S.V.</creatorcontrib><description>Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specifically designed for operation in packet loss conditions. In this paper, we demonstrate an approach to the the design of GMM-based predictive coding for packet loss channels. In particular, we show how a stationary GMM Kalman predictive coder can be modified to obtain a set of encoding and decoding modes, each with different Kalman gains. This approach leads to more robust performance of predictive coding of LSFs in packet loss conditions, as the coder mismatch between the encoder and decoder are minimized. Simulation results show that this Robust GMM Kalman predictive coder performs better than other baseline GMM predictive coders with no increase in complexity. To the best of our knowledge, no previous work has specifically examined the design of GMM predictive coders for packet loss conditions.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4960531</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decoding ; Filtering ; Frequency ; GMM ; Kalman filtering ; Kalman filters ; Performance loss ; Predictive coding ; Predictive models ; Robustness ; Speech coding ; Vector quantization</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.4105-4108</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4960531$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4960531$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Subasingha, S.</creatorcontrib><creatorcontrib>Murthi, M.N.</creatorcontrib><creatorcontrib>Andersen, S.V.</creatorcontrib><title>On GMM Kalman predictive coding of LSFS for packet loss</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specifically designed for operation in packet loss conditions. In this paper, we demonstrate an approach to the the design of GMM-based predictive coding for packet loss channels. In particular, we show how a stationary GMM Kalman predictive coder can be modified to obtain a set of encoding and decoding modes, each with different Kalman gains. This approach leads to more robust performance of predictive coding of LSFs in packet loss conditions, as the coder mismatch between the encoder and decoder are minimized. Simulation results show that this Robust GMM Kalman predictive coder performs better than other baseline GMM predictive coders with no increase in complexity. To the best of our knowledge, no previous work has specifically examined the design of GMM predictive coders for packet loss conditions.</description><subject>Decoding</subject><subject>Filtering</subject><subject>Frequency</subject><subject>GMM</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Performance loss</subject><subject>Predictive coding</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Speech coding</subject><subject>Vector quantization</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Kw0AUhcc_sNQ-QTfzAolzZ-7MZJZSbCu2VIiCu3Kb3JFom4QkCL69AbvxbL7FgY_DEWIOKgVQ4f5p8ZDnL6lWKqQYnLIGLsQs-AxQI2pj0V6KiTY-JBDU-9W_zmTXYgJWq8QBhlsx6_tPNQZHC9qJ8LtarrZb-UzHE9Wy7bisiqH6Zlk0ZVV_yCbKTb7MZWw62VLxxYM8Nn1_J24iHXuenTkVb8vH18U62exW4-BNUoG3QwLMLrJ3mo098IEhMDiNLiu0I1eiJY6A3ngXwWceCCkoRiIFGImcmYr5n7di5n3bVSfqfvbnG8wvaXRKuw</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Subasingha, S.</creator><creator>Murthi, M.N.</creator><creator>Andersen, S.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200904</creationdate><title>On GMM Kalman predictive coding of LSFS for packet loss</title><author>Subasingha, S. ; Murthi, M.N. ; Andersen, S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1ee6fe762e35bebe19e162468c26a6d45aef147376f17871a4a90e4aa014faa63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Decoding</topic><topic>Filtering</topic><topic>Frequency</topic><topic>GMM</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Performance loss</topic><topic>Predictive coding</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Speech coding</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Subasingha, S.</creatorcontrib><creatorcontrib>Murthi, M.N.</creatorcontrib><creatorcontrib>Andersen, S.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Subasingha, S.</au><au>Murthi, M.N.</au><au>Andersen, S.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On GMM Kalman predictive coding of LSFS for packet loss</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-04</date><risdate>2009</risdate><spage>4105</spage><epage>4108</epage><pages>4105-4108</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>Gaussian mixture model (GMM)-based Kalman predictive coders have been shown to perform better than baseline GMM recursive coders in predictive coding of line spectral frequencies (LSFs) for both clean and packet loss conditions However, these stationary GMM Kalman predictive coders were not specifically designed for operation in packet loss conditions. In this paper, we demonstrate an approach to the the design of GMM-based predictive coding for packet loss channels. In particular, we show how a stationary GMM Kalman predictive coder can be modified to obtain a set of encoding and decoding modes, each with different Kalman gains. This approach leads to more robust performance of predictive coding of LSFs in packet loss conditions, as the coder mismatch between the encoder and decoder are minimized. Simulation results show that this Robust GMM Kalman predictive coder performs better than other baseline GMM predictive coders with no increase in complexity. To the best of our knowledge, no previous work has specifically examined the design of GMM predictive coders for packet loss conditions.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4960531</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.4105-4108 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_4960531 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Decoding Filtering Frequency GMM Kalman filtering Kalman filters Performance loss Predictive coding Predictive models Robustness Speech coding Vector quantization |
title | On GMM Kalman predictive coding of LSFS for packet loss |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20GMM%20Kalman%20predictive%20coding%20of%20LSFS%20for%20packet%20loss&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Subasingha,%20S.&rft.date=2009-04&rft.spage=4105&rft.epage=4108&rft.pages=4105-4108&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4960531&rft_dat=%3Cieee_6IE%3E4960531%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4960531&rfr_iscdi=true |