A phonetic feature based lattice rescoring approach to LVCSR
Large Vocabulary Continuous Speech Recognition (LVCSR) systems decode the input speech using diverse information sources, such as acoustic, lexical, and linguistic. Although most of the unreliable hypotheses are pruned during the recognition process, current state-of-the-art systems often make error...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3868 |
---|---|
container_issue | |
container_start_page | 3865 |
container_title | |
container_volume | |
creator | Siniscalchi, S.M. Svendsen, T. Chin-Hui Lee |
description | Large Vocabulary Continuous Speech Recognition (LVCSR) systems decode the input speech using diverse information sources, such as acoustic, lexical, and linguistic. Although most of the unreliable hypotheses are pruned during the recognition process, current state-of-the-art systems often make errors that are ldquounreasonablerdquo for human listeners. Several studies have shown that a proper integration of acoustic-phonetic information can be beneficial to reducing such errors. We have previously shown that high-accuracy phone recognition can be achieved if a bank of speech attribute detectors is used to compute a confidence score describing attribute activation levels that the current frame exhibits. In those experiments, the phone recognition system did not rely on the language model to follow their word sequence constraints, and the vocabulary was small. In this work, we extend our approach to LVCSR by introducing a second recognition step during which additional information not directly used during conventional log-likelihood based decoding is introduced. Experimental results show promising performance. |
doi_str_mv | 10.1109/ICASSP.2009.4960471 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4960471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4960471</ieee_id><sourcerecordid>4960471</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-99386f30725f00489e7e02bf2e6b05cae8d7673c8832236472ef673fe759f6533</originalsourceid><addsrcrecordid>eNpVUE1LxDAUjF9gWfsL9pI_kJrk5RO8LEVXoaBYFW9L2n1xK-u2pPXgv7fgXpzLMDPw3jCELAUvhOD--qFc1fVTITn3hfKGKytOSO6tE0oqJUErfUoyCdYz4fn72b8M3DnJhJacGaH8JcnH8ZPPUBqE0hm5WdFh1x9w6loaMUzfCWkTRtzSfZhmE2nCse1Td_igYRhSH9odnXpavZX18xW5iGE_Yn7kBXm9u30p71n1uJ5bV6wTVk_Me3AmArdSx_mz82iRyyZKNA3XbUC3tcZC6xxICUZZiXHWEa320WiABVn-3e0QcTOk7iukn81xC_gFe0BMVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A phonetic feature based lattice rescoring approach to LVCSR</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siniscalchi, S.M. ; Svendsen, T. ; Chin-Hui Lee</creator><creatorcontrib>Siniscalchi, S.M. ; Svendsen, T. ; Chin-Hui Lee</creatorcontrib><description>Large Vocabulary Continuous Speech Recognition (LVCSR) systems decode the input speech using diverse information sources, such as acoustic, lexical, and linguistic. Although most of the unreliable hypotheses are pruned during the recognition process, current state-of-the-art systems often make errors that are ldquounreasonablerdquo for human listeners. Several studies have shown that a proper integration of acoustic-phonetic information can be beneficial to reducing such errors. We have previously shown that high-accuracy phone recognition can be achieved if a bank of speech attribute detectors is used to compute a confidence score describing attribute activation levels that the current frame exhibits. In those experiments, the phone recognition system did not rely on the language model to follow their word sequence constraints, and the vocabulary was small. In this work, we extend our approach to LVCSR by introducing a second recognition step during which additional information not directly used during conventional log-likelihood based decoding is introduced. Experimental results show promising performance.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4960471</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic signal detection ; Artificial neural networks ; Automatic speech recognition ; Decoding ; Detectors ; Hidden Markov models ; Humans ; Lattices ; neural networks ; Speech recognition ; Vocabulary</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.3865-3868</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4960471$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4960471$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siniscalchi, S.M.</creatorcontrib><creatorcontrib>Svendsen, T.</creatorcontrib><creatorcontrib>Chin-Hui Lee</creatorcontrib><title>A phonetic feature based lattice rescoring approach to LVCSR</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Large Vocabulary Continuous Speech Recognition (LVCSR) systems decode the input speech using diverse information sources, such as acoustic, lexical, and linguistic. Although most of the unreliable hypotheses are pruned during the recognition process, current state-of-the-art systems often make errors that are ldquounreasonablerdquo for human listeners. Several studies have shown that a proper integration of acoustic-phonetic information can be beneficial to reducing such errors. We have previously shown that high-accuracy phone recognition can be achieved if a bank of speech attribute detectors is used to compute a confidence score describing attribute activation levels that the current frame exhibits. In those experiments, the phone recognition system did not rely on the language model to follow their word sequence constraints, and the vocabulary was small. In this work, we extend our approach to LVCSR by introducing a second recognition step during which additional information not directly used during conventional log-likelihood based decoding is introduced. Experimental results show promising performance.</description><subject>Acoustic signal detection</subject><subject>Artificial neural networks</subject><subject>Automatic speech recognition</subject><subject>Decoding</subject><subject>Detectors</subject><subject>Hidden Markov models</subject><subject>Humans</subject><subject>Lattices</subject><subject>neural networks</subject><subject>Speech recognition</subject><subject>Vocabulary</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUE1LxDAUjF9gWfsL9pI_kJrk5RO8LEVXoaBYFW9L2n1xK-u2pPXgv7fgXpzLMDPw3jCELAUvhOD--qFc1fVTITn3hfKGKytOSO6tE0oqJUErfUoyCdYz4fn72b8M3DnJhJacGaH8JcnH8ZPPUBqE0hm5WdFh1x9w6loaMUzfCWkTRtzSfZhmE2nCse1Td_igYRhSH9odnXpavZX18xW5iGE_Yn7kBXm9u30p71n1uJ5bV6wTVk_Me3AmArdSx_mz82iRyyZKNA3XbUC3tcZC6xxICUZZiXHWEa320WiABVn-3e0QcTOk7iukn81xC_gFe0BMVA</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Siniscalchi, S.M.</creator><creator>Svendsen, T.</creator><creator>Chin-Hui Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200904</creationdate><title>A phonetic feature based lattice rescoring approach to LVCSR</title><author>Siniscalchi, S.M. ; Svendsen, T. ; Chin-Hui Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-99386f30725f00489e7e02bf2e6b05cae8d7673c8832236472ef673fe759f6533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic signal detection</topic><topic>Artificial neural networks</topic><topic>Automatic speech recognition</topic><topic>Decoding</topic><topic>Detectors</topic><topic>Hidden Markov models</topic><topic>Humans</topic><topic>Lattices</topic><topic>neural networks</topic><topic>Speech recognition</topic><topic>Vocabulary</topic><toplevel>online_resources</toplevel><creatorcontrib>Siniscalchi, S.M.</creatorcontrib><creatorcontrib>Svendsen, T.</creatorcontrib><creatorcontrib>Chin-Hui Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siniscalchi, S.M.</au><au>Svendsen, T.</au><au>Chin-Hui Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A phonetic feature based lattice rescoring approach to LVCSR</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-04</date><risdate>2009</risdate><spage>3865</spage><epage>3868</epage><pages>3865-3868</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>Large Vocabulary Continuous Speech Recognition (LVCSR) systems decode the input speech using diverse information sources, such as acoustic, lexical, and linguistic. Although most of the unreliable hypotheses are pruned during the recognition process, current state-of-the-art systems often make errors that are ldquounreasonablerdquo for human listeners. Several studies have shown that a proper integration of acoustic-phonetic information can be beneficial to reducing such errors. We have previously shown that high-accuracy phone recognition can be achieved if a bank of speech attribute detectors is used to compute a confidence score describing attribute activation levels that the current frame exhibits. In those experiments, the phone recognition system did not rely on the language model to follow their word sequence constraints, and the vocabulary was small. In this work, we extend our approach to LVCSR by introducing a second recognition step during which additional information not directly used during conventional log-likelihood based decoding is introduced. Experimental results show promising performance.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4960471</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.3865-3868 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_4960471 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic signal detection Artificial neural networks Automatic speech recognition Decoding Detectors Hidden Markov models Humans Lattices neural networks Speech recognition Vocabulary |
title | A phonetic feature based lattice rescoring approach to LVCSR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20phonetic%20feature%20based%20lattice%20rescoring%20approach%20to%20LVCSR&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Siniscalchi,%20S.M.&rft.date=2009-04&rft.spage=3865&rft.epage=3868&rft.pages=3865-3868&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4960471&rft_dat=%3Cieee_6IE%3E4960471%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4960471&rfr_iscdi=true |