A flat direct model for speech recognition
We introduce a direct model for speech recognition that assumes an unstructured, i.e., flat text output. The flat model allows us to model arbitrary attributes and dependences of the output. This is different from the HMMs typically used for speech recognition. This conventional modeling approach is...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3864 |
---|---|
container_issue | |
container_start_page | 3861 |
container_title | |
container_volume | |
creator | Heigold, G. Zweig, G. Li, X. Nguyen, P. |
description | We introduce a direct model for speech recognition that assumes an unstructured, i.e., flat text output. The flat model allows us to model arbitrary attributes and dependences of the output. This is different from the HMMs typically used for speech recognition. This conventional modeling approach is based on sequential data and makes rigid assumptions on the dependences. HMMs have proven to be convenient and appropriate for large vocabulary continuous speech recognition. Our task under consideration, however, is the Windows Live Search for Mobile (WLS4M) task. This is a cellphone application that allows users to interact with web-based information portals. In particular, the set of valid outputs can be considered discrete and finite (although probably large, i.e., unseen events are an issue). Hence, a flat direct model lends itself to this task, making the adding of different knowledge sources and dependences straightforward and cheap. Using e.g. HMM posterior, m-gram, and spotter features, significant improvements over the conventional HMM system were observed. |
doi_str_mv | 10.1109/ICASSP.2009.4960470 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4960470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4960470</ieee_id><sourcerecordid>4960470</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-800a9f21de2a065b57b4f3d2de173889c3f4289d0c8ba4fc7bbff0a8e844333</originalsourceid><addsrcrecordid>eNpVjz9rwzAUxNV_UJP6E2TRXLD7JD1Z0hhCmxYCDThDtyBbT62KEwfbS799Dc3SWw7uB8cdY0sBpRDgnt7Wq7relRLAlegqQANXLHfGCpSIUmnU1yyTyrhCOPi4-ceUvWWZ0BKKSqC7Z_k4fsMs1EqgztjjisfOTzykgdqJH_tAHY_9wMczUfvF57T_PKUp9acHdhd9N1J-8QWrX57369di-76ZN26LJIyeCgvgXZQikPRQ6UabBqMKMpAwylrXqojSugCtbTzG1jRNjOAtWUSl1IIt_1oTER3OQzr64edw-a1-ASDKRp8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A flat direct model for speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Heigold, G. ; Zweig, G. ; Li, X. ; Nguyen, P.</creator><creatorcontrib>Heigold, G. ; Zweig, G. ; Li, X. ; Nguyen, P.</creatorcontrib><description>We introduce a direct model for speech recognition that assumes an unstructured, i.e., flat text output. The flat model allows us to model arbitrary attributes and dependences of the output. This is different from the HMMs typically used for speech recognition. This conventional modeling approach is based on sequential data and makes rigid assumptions on the dependences. HMMs have proven to be convenient and appropriate for large vocabulary continuous speech recognition. Our task under consideration, however, is the Windows Live Search for Mobile (WLS4M) task. This is a cellphone application that allows users to interact with web-based information portals. In particular, the set of valid outputs can be considered discrete and finite (although probably large, i.e., unseen events are an issue). Hence, a flat direct model lends itself to this task, making the adding of different knowledge sources and dependences straightforward and cheap. Using e.g. HMM posterior, m-gram, and spotter features, significant improvements over the conventional HMM system were observed.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4960470</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cellular phones ; Computer science ; Detectors ; Entropy ; Hidden Markov models ; language model ; maximum entropy ; Natural languages ; nearest neighbor ; Portals ; Speech recognition ; Testing ; Vocabulary ; voice search</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.3861-3864</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4960470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4960470$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heigold, G.</creatorcontrib><creatorcontrib>Zweig, G.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Nguyen, P.</creatorcontrib><title>A flat direct model for speech recognition</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>We introduce a direct model for speech recognition that assumes an unstructured, i.e., flat text output. The flat model allows us to model arbitrary attributes and dependences of the output. This is different from the HMMs typically used for speech recognition. This conventional modeling approach is based on sequential data and makes rigid assumptions on the dependences. HMMs have proven to be convenient and appropriate for large vocabulary continuous speech recognition. Our task under consideration, however, is the Windows Live Search for Mobile (WLS4M) task. This is a cellphone application that allows users to interact with web-based information portals. In particular, the set of valid outputs can be considered discrete and finite (although probably large, i.e., unseen events are an issue). Hence, a flat direct model lends itself to this task, making the adding of different knowledge sources and dependences straightforward and cheap. Using e.g. HMM posterior, m-gram, and spotter features, significant improvements over the conventional HMM system were observed.</description><subject>Cellular phones</subject><subject>Computer science</subject><subject>Detectors</subject><subject>Entropy</subject><subject>Hidden Markov models</subject><subject>language model</subject><subject>maximum entropy</subject><subject>Natural languages</subject><subject>nearest neighbor</subject><subject>Portals</subject><subject>Speech recognition</subject><subject>Testing</subject><subject>Vocabulary</subject><subject>voice search</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjz9rwzAUxNV_UJP6E2TRXLD7JD1Z0hhCmxYCDThDtyBbT62KEwfbS799Dc3SWw7uB8cdY0sBpRDgnt7Wq7relRLAlegqQANXLHfGCpSIUmnU1yyTyrhCOPi4-ceUvWWZ0BKKSqC7Z_k4fsMs1EqgztjjisfOTzykgdqJH_tAHY_9wMczUfvF57T_PKUp9acHdhd9N1J-8QWrX57369di-76ZN26LJIyeCgvgXZQikPRQ6UabBqMKMpAwylrXqojSugCtbTzG1jRNjOAtWUSl1IIt_1oTER3OQzr64edw-a1-ASDKRp8</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Heigold, G.</creator><creator>Zweig, G.</creator><creator>Li, X.</creator><creator>Nguyen, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200904</creationdate><title>A flat direct model for speech recognition</title><author>Heigold, G. ; Zweig, G. ; Li, X. ; Nguyen, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-800a9f21de2a065b57b4f3d2de173889c3f4289d0c8ba4fc7bbff0a8e844333</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cellular phones</topic><topic>Computer science</topic><topic>Detectors</topic><topic>Entropy</topic><topic>Hidden Markov models</topic><topic>language model</topic><topic>maximum entropy</topic><topic>Natural languages</topic><topic>nearest neighbor</topic><topic>Portals</topic><topic>Speech recognition</topic><topic>Testing</topic><topic>Vocabulary</topic><topic>voice search</topic><toplevel>online_resources</toplevel><creatorcontrib>Heigold, G.</creatorcontrib><creatorcontrib>Zweig, G.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Nguyen, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heigold, G.</au><au>Zweig, G.</au><au>Li, X.</au><au>Nguyen, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A flat direct model for speech recognition</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-04</date><risdate>2009</risdate><spage>3861</spage><epage>3864</epage><pages>3861-3864</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>We introduce a direct model for speech recognition that assumes an unstructured, i.e., flat text output. The flat model allows us to model arbitrary attributes and dependences of the output. This is different from the HMMs typically used for speech recognition. This conventional modeling approach is based on sequential data and makes rigid assumptions on the dependences. HMMs have proven to be convenient and appropriate for large vocabulary continuous speech recognition. Our task under consideration, however, is the Windows Live Search for Mobile (WLS4M) task. This is a cellphone application that allows users to interact with web-based information portals. In particular, the set of valid outputs can be considered discrete and finite (although probably large, i.e., unseen events are an issue). Hence, a flat direct model lends itself to this task, making the adding of different knowledge sources and dependences straightforward and cheap. Using e.g. HMM posterior, m-gram, and spotter features, significant improvements over the conventional HMM system were observed.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4960470</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.3861-3864 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_4960470 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cellular phones Computer science Detectors Entropy Hidden Markov models language model maximum entropy Natural languages nearest neighbor Portals Speech recognition Testing Vocabulary voice search |
title | A flat direct model for speech recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20flat%20direct%20model%20for%20speech%20recognition&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Heigold,%20G.&rft.date=2009-04&rft.spage=3861&rft.epage=3864&rft.pages=3861-3864&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4960470&rft_dat=%3Cieee_6IE%3E4960470%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4960470&rfr_iscdi=true |