Audio-based automatic management of TV commercials
Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, wit...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1308 |
---|---|
container_issue | |
container_start_page | 1305 |
container_title | |
container_volume | |
creator | Duxans, H. Conejero, D. Anguera, X. |
description | Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, without clustering nor identification. In this paper two advertisement indexing approaches are presented: an off-line detection and clustering system and an online identification system, both based only on audio features for computational reasons. For the off-line clustering two metrics are evaluated, and an initial commercial boundary detection algorithm, based on identifying drop energy points which are also acoustic change boundaries, is presented. For the on-line system we analyze the response-time/identification scores constraints. Experiments performed on real data validate both off-line and on-line implementations as well as that audio only features are enough discriminant to detect and classify TV commercials. |
doi_str_mv | 10.1109/ICASSP.2009.4959831 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4959831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4959831</ieee_id><sourcerecordid>4959831</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-ae22d687590cd6994c005ed4798925df05e66f8fd21bb47fb8fe57ddee64f5fd3</originalsourceid><addsrcrecordid>eNpVkMtqwzAURNUX1KT-gmz8A3L1uHrcZQh9QaCFpKW7IFtXRaWOi-0s-vc1NJvO5jAMDMMwtpSillLg7dN6td2-1EoIrAENei3PWInOS1AAShsw56xQ2iGXKN4v_mXaX7JCGiW4lYDXrBzHTzELjJZgCqZWx5h73oSRYhWOU9-FKbdVFw7hgzo6TFWfqt1b1fZdR0Obw9d4w67SDCpPXLDX-7vd-pFvnh_mrRuelRITD6RUtN4ZFG20iNAKYSiCQ4_KxDQba5NPUcmmAZcan8i4GIksJJOiXrDlX28mov33kLsw_OxPD-hfkStKwg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Audio-based automatic management of TV commercials</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Duxans, H. ; Conejero, D. ; Anguera, X.</creator><creatorcontrib>Duxans, H. ; Conejero, D. ; Anguera, X.</creatorcontrib><description>Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, without clustering nor identification. In this paper two advertisement indexing approaches are presented: an off-line detection and clustering system and an online identification system, both based only on audio features for computational reasons. For the off-line clustering two metrics are evaluated, and an initial commercial boundary detection algorithm, based on identifying drop energy points which are also acoustic change boundaries, is presented. For the on-line system we analyze the response-time/identification scores constraints. Experiments performed on real data validate both off-line and on-line implementations as well as that audio only features are enough discriminant to detect and classify TV commercials.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4959831</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic signal detection ; Clustering algorithms ; Clustering methods ; Detection algorithms ; Identification ; Indexing ; Multimedia communication ; Multimedia systems ; Real time systems ; Technology management ; TV broadcasting</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.1305-1308</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4959831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4959831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duxans, H.</creatorcontrib><creatorcontrib>Conejero, D.</creatorcontrib><creatorcontrib>Anguera, X.</creatorcontrib><title>Audio-based automatic management of TV commercials</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, without clustering nor identification. In this paper two advertisement indexing approaches are presented: an off-line detection and clustering system and an online identification system, both based only on audio features for computational reasons. For the off-line clustering two metrics are evaluated, and an initial commercial boundary detection algorithm, based on identifying drop energy points which are also acoustic change boundaries, is presented. For the on-line system we analyze the response-time/identification scores constraints. Experiments performed on real data validate both off-line and on-line implementations as well as that audio only features are enough discriminant to detect and classify TV commercials.</description><subject>Acoustic signal detection</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Detection algorithms</subject><subject>Identification</subject><subject>Indexing</subject><subject>Multimedia communication</subject><subject>Multimedia systems</subject><subject>Real time systems</subject><subject>Technology management</subject><subject>TV broadcasting</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtqwzAURNUX1KT-gmz8A3L1uHrcZQh9QaCFpKW7IFtXRaWOi-0s-vc1NJvO5jAMDMMwtpSillLg7dN6td2-1EoIrAENei3PWInOS1AAShsw56xQ2iGXKN4v_mXaX7JCGiW4lYDXrBzHTzELjJZgCqZWx5h73oSRYhWOU9-FKbdVFw7hgzo6TFWfqt1b1fZdR0Obw9d4w67SDCpPXLDX-7vd-pFvnh_mrRuelRITD6RUtN4ZFG20iNAKYSiCQ4_KxDQba5NPUcmmAZcan8i4GIksJJOiXrDlX28mov33kLsw_OxPD-hfkStKwg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Duxans, H.</creator><creator>Conejero, D.</creator><creator>Anguera, X.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20090101</creationdate><title>Audio-based automatic management of TV commercials</title><author>Duxans, H. ; Conejero, D. ; Anguera, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-ae22d687590cd6994c005ed4798925df05e66f8fd21bb47fb8fe57ddee64f5fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic signal detection</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Detection algorithms</topic><topic>Identification</topic><topic>Indexing</topic><topic>Multimedia communication</topic><topic>Multimedia systems</topic><topic>Real time systems</topic><topic>Technology management</topic><topic>TV broadcasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Duxans, H.</creatorcontrib><creatorcontrib>Conejero, D.</creatorcontrib><creatorcontrib>Anguera, X.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duxans, H.</au><au>Conejero, D.</au><au>Anguera, X.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Audio-based automatic management of TV commercials</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>1305</spage><epage>1308</epage><pages>1305-1308</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, without clustering nor identification. In this paper two advertisement indexing approaches are presented: an off-line detection and clustering system and an online identification system, both based only on audio features for computational reasons. For the off-line clustering two metrics are evaluated, and an initial commercial boundary detection algorithm, based on identifying drop energy points which are also acoustic change boundaries, is presented. For the on-line system we analyze the response-time/identification scores constraints. Experiments performed on real data validate both off-line and on-line implementations as well as that audio only features are enough discriminant to detect and classify TV commercials.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4959831</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.1305-1308 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_4959831 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic signal detection Clustering algorithms Clustering methods Detection algorithms Identification Indexing Multimedia communication Multimedia systems Real time systems Technology management TV broadcasting |
title | Audio-based automatic management of TV commercials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Audio-based%20automatic%20management%20of%20TV%20commercials&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Duxans,%20H.&rft.date=2009-01-01&rft.spage=1305&rft.epage=1308&rft.pages=1305-1308&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4959831&rft_dat=%3Cieee_6IE%3E4959831%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4959831&rfr_iscdi=true |