Audio-based automatic management of TV commercials

Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Duxans, H., Conejero, D., Anguera, X.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1308
container_issue
container_start_page 1305
container_title
container_volume
creator Duxans, H.
Conejero, D.
Anguera, X.
description Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, without clustering nor identification. In this paper two advertisement indexing approaches are presented: an off-line detection and clustering system and an online identification system, both based only on audio features for computational reasons. For the off-line clustering two metrics are evaluated, and an initial commercial boundary detection algorithm, based on identifying drop energy points which are also acoustic change boundaries, is presented. For the on-line system we analyze the response-time/identification scores constraints. Experiments performed on real data validate both off-line and on-line implementations as well as that audio only features are enough discriminant to detect and classify TV commercials.
doi_str_mv 10.1109/ICASSP.2009.4959831
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4959831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4959831</ieee_id><sourcerecordid>4959831</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-ae22d687590cd6994c005ed4798925df05e66f8fd21bb47fb8fe57ddee64f5fd3</originalsourceid><addsrcrecordid>eNpVkMtqwzAURNUX1KT-gmz8A3L1uHrcZQh9QaCFpKW7IFtXRaWOi-0s-vc1NJvO5jAMDMMwtpSillLg7dN6td2-1EoIrAENei3PWInOS1AAShsw56xQ2iGXKN4v_mXaX7JCGiW4lYDXrBzHTzELjJZgCqZWx5h73oSRYhWOU9-FKbdVFw7hgzo6TFWfqt1b1fZdR0Obw9d4w67SDCpPXLDX-7vd-pFvnh_mrRuelRITD6RUtN4ZFG20iNAKYSiCQ4_KxDQba5NPUcmmAZcan8i4GIksJJOiXrDlX28mov33kLsw_OxPD-hfkStKwg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Audio-based automatic management of TV commercials</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Duxans, H. ; Conejero, D. ; Anguera, X.</creator><creatorcontrib>Duxans, H. ; Conejero, D. ; Anguera, X.</creatorcontrib><description>Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, without clustering nor identification. In this paper two advertisement indexing approaches are presented: an off-line detection and clustering system and an online identification system, both based only on audio features for computational reasons. For the off-line clustering two metrics are evaluated, and an initial commercial boundary detection algorithm, based on identifying drop energy points which are also acoustic change boundaries, is presented. For the on-line system we analyze the response-time/identification scores constraints. Experiments performed on real data validate both off-line and on-line implementations as well as that audio only features are enough discriminant to detect and classify TV commercials.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424423538</identifier><identifier>ISBN: 1424423538</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424423545</identifier><identifier>EISBN: 1424423546</identifier><identifier>DOI: 10.1109/ICASSP.2009.4959831</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic signal detection ; Clustering algorithms ; Clustering methods ; Detection algorithms ; Identification ; Indexing ; Multimedia communication ; Multimedia systems ; Real time systems ; Technology management ; TV broadcasting</subject><ispartof>2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.1305-1308</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4959831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4959831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duxans, H.</creatorcontrib><creatorcontrib>Conejero, D.</creatorcontrib><creatorcontrib>Anguera, X.</creatorcontrib><title>Audio-based automatic management of TV commercials</title><title>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, without clustering nor identification. In this paper two advertisement indexing approaches are presented: an off-line detection and clustering system and an online identification system, both based only on audio features for computational reasons. For the off-line clustering two metrics are evaluated, and an initial commercial boundary detection algorithm, based on identifying drop energy points which are also acoustic change boundaries, is presented. For the on-line system we analyze the response-time/identification scores constraints. Experiments performed on real data validate both off-line and on-line implementations as well as that audio only features are enough discriminant to detect and classify TV commercials.</description><subject>Acoustic signal detection</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Detection algorithms</subject><subject>Identification</subject><subject>Indexing</subject><subject>Multimedia communication</subject><subject>Multimedia systems</subject><subject>Real time systems</subject><subject>Technology management</subject><subject>TV broadcasting</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424423538</isbn><isbn>1424423538</isbn><isbn>9781424423545</isbn><isbn>1424423546</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtqwzAURNUX1KT-gmz8A3L1uHrcZQh9QaCFpKW7IFtXRaWOi-0s-vc1NJvO5jAMDMMwtpSillLg7dN6td2-1EoIrAENei3PWInOS1AAShsw56xQ2iGXKN4v_mXaX7JCGiW4lYDXrBzHTzELjJZgCqZWx5h73oSRYhWOU9-FKbdVFw7hgzo6TFWfqt1b1fZdR0Obw9d4w67SDCpPXLDX-7vd-pFvnh_mrRuelRITD6RUtN4ZFG20iNAKYSiCQ4_KxDQba5NPUcmmAZcan8i4GIksJJOiXrDlX28mov33kLsw_OxPD-hfkStKwg</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Duxans, H.</creator><creator>Conejero, D.</creator><creator>Anguera, X.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20090101</creationdate><title>Audio-based automatic management of TV commercials</title><author>Duxans, H. ; Conejero, D. ; Anguera, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-ae22d687590cd6994c005ed4798925df05e66f8fd21bb47fb8fe57ddee64f5fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic signal detection</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Detection algorithms</topic><topic>Identification</topic><topic>Indexing</topic><topic>Multimedia communication</topic><topic>Multimedia systems</topic><topic>Real time systems</topic><topic>Technology management</topic><topic>TV broadcasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Duxans, H.</creatorcontrib><creatorcontrib>Conejero, D.</creatorcontrib><creatorcontrib>Anguera, X.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duxans, H.</au><au>Conejero, D.</au><au>Anguera, X.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Audio-based automatic management of TV commercials</atitle><btitle>2009 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2009-01-01</date><risdate>2009</risdate><spage>1305</spage><epage>1308</epage><pages>1305-1308</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424423538</isbn><isbn>1424423538</isbn><eisbn>9781424423545</eisbn><eisbn>1424423546</eisbn><abstract>Although TV commercial identification and clustering are suitable applications for automatic multimedia indexing technology, they remain as problems still unsolved. Most current systems either require a big computational load and therefore can not be executed online, or just perform a detection, without clustering nor identification. In this paper two advertisement indexing approaches are presented: an off-line detection and clustering system and an online identification system, both based only on audio features for computational reasons. For the off-line clustering two metrics are evaluated, and an initial commercial boundary detection algorithm, based on identifying drop energy points which are also acoustic change boundaries, is presented. For the on-line system we analyze the response-time/identification scores constraints. Experiments performed on real data validate both off-line and on-line implementations as well as that audio only features are enough discriminant to detect and classify TV commercials.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2009.4959831</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p.1305-1308
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4959831
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic signal detection
Clustering algorithms
Clustering methods
Detection algorithms
Identification
Indexing
Multimedia communication
Multimedia systems
Real time systems
Technology management
TV broadcasting
title Audio-based automatic management of TV commercials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Audio-based%20automatic%20management%20of%20TV%20commercials&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Duxans,%20H.&rft.date=2009-01-01&rft.spage=1305&rft.epage=1308&rft.pages=1305-1308&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424423538&rft.isbn_list=1424423538&rft_id=info:doi/10.1109/ICASSP.2009.4959831&rft_dat=%3Cieee_6IE%3E4959831%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424423545&rft.eisbn_list=1424423546&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4959831&rfr_iscdi=true