A Multi-Criteria Interval Optimization Model for Manufacturing Supplier Selection Using Genetic Algorithm

This paper presents a multi-criteria interval optimization model to determine the optimal criteria values and then rank the candidate suppliers. Evaluation criteria values are considered as interval data and the optimization model is constructed based on the concept of distance measure of the Euclid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cheng, Fangqi, Wang, Huaiao, Ye, Feifan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 761
container_issue
container_start_page 757
container_title
container_volume 3
creator Cheng, Fangqi
Wang, Huaiao
Ye, Feifan
description This paper presents a multi-criteria interval optimization model to determine the optimal criteria values and then rank the candidate suppliers. Evaluation criteria values are considered as interval data and the optimization model is constructed based on the concept of distance measure of the Euclidean distance and vector theories. It is proved that the optimization objective function must have an optimal solution and genetic algorithm based on integer encoding is applied to obtain it. The computational results of a practical example suggested the proposed model and approach is satisfactory and the final choice is obtained. Finally, encouraging conclusions are given.
doi_str_mv 10.1109/ETCS.2009.705
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4959422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4959422</ieee_id><sourcerecordid>4959422</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3482a97ff8a56fd390c4e70bef83ba2925fa72837c2d3a396c994d86f915de523</originalsourceid><addsrcrecordid>eNotUEtLAzEYDIigrT168pI_sDXP3eRYitZCSw-155LufqmfpLtLNivorzc-5jIwMwzDEHLP2ZxzZh-fXpf7uWDMziumr8iEK6GU1IbzazLJurFKlEbekNkwvLMMpaUy-pbggm7HkLBYRkwQ0dF1m_nDBbrrE17wyyXsWrrtGgjUd5FuXTt6V6cxYnum-7HvA0KkewhQ_0YPw4-xghYS1nQRzl2ufrvckWvvwgCzf56Sw3Oe_VJsdqv1crEpkFc6FXmWcLby3jhd-kZaViuo2Am8kScnrNDeVcLIqhaNdNKWtbWqMaW3XDeghZySh79eBIBjH_Hi4udRWZ0vEPIbWblYPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Multi-Criteria Interval Optimization Model for Manufacturing Supplier Selection Using Genetic Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cheng, Fangqi ; Wang, Huaiao ; Ye, Feifan</creator><creatorcontrib>Cheng, Fangqi ; Wang, Huaiao ; Ye, Feifan</creatorcontrib><description>This paper presents a multi-criteria interval optimization model to determine the optimal criteria values and then rank the candidate suppliers. Evaluation criteria values are considered as interval data and the optimization model is constructed based on the concept of distance measure of the Euclidean distance and vector theories. It is proved that the optimization objective function must have an optimal solution and genetic algorithm based on integer encoding is applied to obtain it. The computational results of a practical example suggested the proposed model and approach is satisfactory and the final choice is obtained. Finally, encouraging conclusions are given.</description><identifier>ISBN: 1424435811</identifier><identifier>ISBN: 9781424435814</identifier><identifier>ISBN: 0769535577</identifier><identifier>ISBN: 9780769535579</identifier><identifier>DOI: 10.1109/ETCS.2009.705</identifier><identifier>LCCN: 2008942683</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science education ; Costs ; Educational technology ; Euclidean distance ; genetic algorithm ; Genetic algorithms ; interval optimization ; Manufacturing processes ; Mathematical model ; Paper technology ; Pulp manufacturing ; supplier selection ; Virtual manufacturing</subject><ispartof>2009 First International Workshop on Education Technology and Computer Science, 2009, Vol.3, p.757-761</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4959422$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4959422$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Fangqi</creatorcontrib><creatorcontrib>Wang, Huaiao</creatorcontrib><creatorcontrib>Ye, Feifan</creatorcontrib><title>A Multi-Criteria Interval Optimization Model for Manufacturing Supplier Selection Using Genetic Algorithm</title><title>2009 First International Workshop on Education Technology and Computer Science</title><addtitle>ETCS</addtitle><description>This paper presents a multi-criteria interval optimization model to determine the optimal criteria values and then rank the candidate suppliers. Evaluation criteria values are considered as interval data and the optimization model is constructed based on the concept of distance measure of the Euclidean distance and vector theories. It is proved that the optimization objective function must have an optimal solution and genetic algorithm based on integer encoding is applied to obtain it. The computational results of a practical example suggested the proposed model and approach is satisfactory and the final choice is obtained. Finally, encouraging conclusions are given.</description><subject>Computer science education</subject><subject>Costs</subject><subject>Educational technology</subject><subject>Euclidean distance</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>interval optimization</subject><subject>Manufacturing processes</subject><subject>Mathematical model</subject><subject>Paper technology</subject><subject>Pulp manufacturing</subject><subject>supplier selection</subject><subject>Virtual manufacturing</subject><isbn>1424435811</isbn><isbn>9781424435814</isbn><isbn>0769535577</isbn><isbn>9780769535579</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtLAzEYDIigrT168pI_sDXP3eRYitZCSw-155LufqmfpLtLNivorzc-5jIwMwzDEHLP2ZxzZh-fXpf7uWDMziumr8iEK6GU1IbzazLJurFKlEbekNkwvLMMpaUy-pbggm7HkLBYRkwQ0dF1m_nDBbrrE17wyyXsWrrtGgjUd5FuXTt6V6cxYnum-7HvA0KkewhQ_0YPw4-xghYS1nQRzl2ufrvckWvvwgCzf56Sw3Oe_VJsdqv1crEpkFc6FXmWcLby3jhd-kZaViuo2Am8kScnrNDeVcLIqhaNdNKWtbWqMaW3XDeghZySh79eBIBjH_Hi4udRWZ0vEPIbWblYPg</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Cheng, Fangqi</creator><creator>Wang, Huaiao</creator><creator>Ye, Feifan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>A Multi-Criteria Interval Optimization Model for Manufacturing Supplier Selection Using Genetic Algorithm</title><author>Cheng, Fangqi ; Wang, Huaiao ; Ye, Feifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3482a97ff8a56fd390c4e70bef83ba2925fa72837c2d3a396c994d86f915de523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer science education</topic><topic>Costs</topic><topic>Educational technology</topic><topic>Euclidean distance</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>interval optimization</topic><topic>Manufacturing processes</topic><topic>Mathematical model</topic><topic>Paper technology</topic><topic>Pulp manufacturing</topic><topic>supplier selection</topic><topic>Virtual manufacturing</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Fangqi</creatorcontrib><creatorcontrib>Wang, Huaiao</creatorcontrib><creatorcontrib>Ye, Feifan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Fangqi</au><au>Wang, Huaiao</au><au>Ye, Feifan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Multi-Criteria Interval Optimization Model for Manufacturing Supplier Selection Using Genetic Algorithm</atitle><btitle>2009 First International Workshop on Education Technology and Computer Science</btitle><stitle>ETCS</stitle><date>2009-03</date><risdate>2009</risdate><volume>3</volume><spage>757</spage><epage>761</epage><pages>757-761</pages><isbn>1424435811</isbn><isbn>9781424435814</isbn><isbn>0769535577</isbn><isbn>9780769535579</isbn><abstract>This paper presents a multi-criteria interval optimization model to determine the optimal criteria values and then rank the candidate suppliers. Evaluation criteria values are considered as interval data and the optimization model is constructed based on the concept of distance measure of the Euclidean distance and vector theories. It is proved that the optimization objective function must have an optimal solution and genetic algorithm based on integer encoding is applied to obtain it. The computational results of a practical example suggested the proposed model and approach is satisfactory and the final choice is obtained. Finally, encouraging conclusions are given.</abstract><pub>IEEE</pub><doi>10.1109/ETCS.2009.705</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424435811
ispartof 2009 First International Workshop on Education Technology and Computer Science, 2009, Vol.3, p.757-761
issn
language eng
recordid cdi_ieee_primary_4959422
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science education
Costs
Educational technology
Euclidean distance
genetic algorithm
Genetic algorithms
interval optimization
Manufacturing processes
Mathematical model
Paper technology
Pulp manufacturing
supplier selection
Virtual manufacturing
title A Multi-Criteria Interval Optimization Model for Manufacturing Supplier Selection Using Genetic Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T22%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Multi-Criteria%20Interval%20Optimization%20Model%20for%20Manufacturing%20Supplier%20Selection%20Using%20Genetic%20Algorithm&rft.btitle=2009%20First%20International%20Workshop%20on%20Education%20Technology%20and%20Computer%20Science&rft.au=Cheng,%20Fangqi&rft.date=2009-03&rft.volume=3&rft.spage=757&rft.epage=761&rft.pages=757-761&rft.isbn=1424435811&rft.isbn_list=9781424435814&rft.isbn_list=0769535577&rft.isbn_list=9780769535579&rft_id=info:doi/10.1109/ETCS.2009.705&rft_dat=%3Cieee_6IE%3E4959422%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4959422&rfr_iscdi=true