Speech signal enhancement using neural network and wavelet transform

Speech enhancement is concerned with the processing of corrupted or noisy speech signal in order to improve the quality or intelligibility of the signal. Our goal is to enhance speech signal corrupted by noise to obtain a clean signal with higher quality. However, the presence of noise in speech sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Daqrouq, K., Abu-Isbeih, I.N., Alfauri, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Daqrouq, K.
Abu-Isbeih, I.N.
Alfauri, M.
description Speech enhancement is concerned with the processing of corrupted or noisy speech signal in order to improve the quality or intelligibility of the signal. Our goal is to enhance speech signal corrupted by noise to obtain a clean signal with higher quality. However, the presence of noise in speech signals will contribute to a high degree of inaccuracy in a system that requires speech processing. This idea of noise cancellation for the speech signal was processed through the neural networks. Three methods were tested: 1. The adaptive linear neuron (ADALINE). 2. feed forward neural network enhancement method FFNN 3. wavelet transform and Adaline enhancement Method. The results obtained showed high quality due to fast processing and high signal-noise-ratio. The tested signal was enhanced 10 dB by Adaline, 3 dB by FFNN and 8 dB by Wavelet Transform and Adaline Enhancement Method.
doi_str_mv 10.1109/SSD.2009.4956823
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4956823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4956823</ieee_id><sourcerecordid>4956823</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-389013da76e6f3ca5a9cd74bd03de5fadc355009280fc646a9c2233a2e1679423</originalsourceid><addsrcrecordid>eNo1UEtLw0AYXJGCtuYueNk_kLrv7B6l9QUFD-m9fO5-aaPJtuymFv-9EetchmGGYRhCbjmbc87cfV0v54IxN1dOGyvkBSlcZbkSSimpjL0k03-h7YRMf7OOCcXkFSly_mAjlBbWVtdkWR8Q_Y7mdhuhoxh3ED32GAd6zG3c0ojHNBoRh9M-fVKIgZ7gCzsc6JAg5maf-hsyaaDLWJx5RtZPj-vFS7l6e35dPKzK1rGhlNYxLgNUBk0jPWhwPlTqPTAZUDcQvNR6nCosa7xRZrSFkBIEclM5JeSM3P3Vtoi4OaS2h_S9OZ8gfwBSSU3d</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Speech signal enhancement using neural network and wavelet transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Daqrouq, K. ; Abu-Isbeih, I.N. ; Alfauri, M.</creator><creatorcontrib>Daqrouq, K. ; Abu-Isbeih, I.N. ; Alfauri, M.</creatorcontrib><description>Speech enhancement is concerned with the processing of corrupted or noisy speech signal in order to improve the quality or intelligibility of the signal. Our goal is to enhance speech signal corrupted by noise to obtain a clean signal with higher quality. However, the presence of noise in speech signals will contribute to a high degree of inaccuracy in a system that requires speech processing. This idea of noise cancellation for the speech signal was processed through the neural networks. Three methods were tested: 1. The adaptive linear neuron (ADALINE). 2. feed forward neural network enhancement method FFNN 3. wavelet transform and Adaline enhancement Method. The results obtained showed high quality due to fast processing and high signal-noise-ratio. The tested signal was enhanced 10 dB by Adaline, 3 dB by FFNN and 8 dB by Wavelet Transform and Adaline Enhancement Method.</description><identifier>ISBN: 1424443458</identifier><identifier>ISBN: 9781424443451</identifier><identifier>EISBN: 9781424443468</identifier><identifier>EISBN: 1424443466</identifier><identifier>DOI: 10.1109/SSD.2009.4956823</identifier><identifier>LCCN: 2009902403</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete wavelet transform ; Feedforward neural networks ; Feeds ; Neural network ; Neural networks ; Neurons ; Noise cancellation ; Signal processing ; Speech enhancement ; Speech processing ; Speech signal ; Testing ; Wavelet transforms</subject><ispartof>2009 6th International Multi-Conference on Systems, Signals and Devices, 2009, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4956823$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4956823$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Daqrouq, K.</creatorcontrib><creatorcontrib>Abu-Isbeih, I.N.</creatorcontrib><creatorcontrib>Alfauri, M.</creatorcontrib><title>Speech signal enhancement using neural network and wavelet transform</title><title>2009 6th International Multi-Conference on Systems, Signals and Devices</title><addtitle>SSD</addtitle><description>Speech enhancement is concerned with the processing of corrupted or noisy speech signal in order to improve the quality or intelligibility of the signal. Our goal is to enhance speech signal corrupted by noise to obtain a clean signal with higher quality. However, the presence of noise in speech signals will contribute to a high degree of inaccuracy in a system that requires speech processing. This idea of noise cancellation for the speech signal was processed through the neural networks. Three methods were tested: 1. The adaptive linear neuron (ADALINE). 2. feed forward neural network enhancement method FFNN 3. wavelet transform and Adaline enhancement Method. The results obtained showed high quality due to fast processing and high signal-noise-ratio. The tested signal was enhanced 10 dB by Adaline, 3 dB by FFNN and 8 dB by Wavelet Transform and Adaline Enhancement Method.</description><subject>Discrete wavelet transform</subject><subject>Feedforward neural networks</subject><subject>Feeds</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise cancellation</subject><subject>Signal processing</subject><subject>Speech enhancement</subject><subject>Speech processing</subject><subject>Speech signal</subject><subject>Testing</subject><subject>Wavelet transforms</subject><isbn>1424443458</isbn><isbn>9781424443451</isbn><isbn>9781424443468</isbn><isbn>1424443466</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtLw0AYXJGCtuYueNk_kLrv7B6l9QUFD-m9fO5-aaPJtuymFv-9EetchmGGYRhCbjmbc87cfV0v54IxN1dOGyvkBSlcZbkSSimpjL0k03-h7YRMf7OOCcXkFSly_mAjlBbWVtdkWR8Q_Y7mdhuhoxh3ED32GAd6zG3c0ojHNBoRh9M-fVKIgZ7gCzsc6JAg5maf-hsyaaDLWJx5RtZPj-vFS7l6e35dPKzK1rGhlNYxLgNUBk0jPWhwPlTqPTAZUDcQvNR6nCosa7xRZrSFkBIEclM5JeSM3P3Vtoi4OaS2h_S9OZ8gfwBSSU3d</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Daqrouq, K.</creator><creator>Abu-Isbeih, I.N.</creator><creator>Alfauri, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Speech signal enhancement using neural network and wavelet transform</title><author>Daqrouq, K. ; Abu-Isbeih, I.N. ; Alfauri, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-389013da76e6f3ca5a9cd74bd03de5fadc355009280fc646a9c2233a2e1679423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Discrete wavelet transform</topic><topic>Feedforward neural networks</topic><topic>Feeds</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise cancellation</topic><topic>Signal processing</topic><topic>Speech enhancement</topic><topic>Speech processing</topic><topic>Speech signal</topic><topic>Testing</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Daqrouq, K.</creatorcontrib><creatorcontrib>Abu-Isbeih, I.N.</creatorcontrib><creatorcontrib>Alfauri, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daqrouq, K.</au><au>Abu-Isbeih, I.N.</au><au>Alfauri, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Speech signal enhancement using neural network and wavelet transform</atitle><btitle>2009 6th International Multi-Conference on Systems, Signals and Devices</btitle><stitle>SSD</stitle><date>2009-03</date><risdate>2009</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424443458</isbn><isbn>9781424443451</isbn><eisbn>9781424443468</eisbn><eisbn>1424443466</eisbn><abstract>Speech enhancement is concerned with the processing of corrupted or noisy speech signal in order to improve the quality or intelligibility of the signal. Our goal is to enhance speech signal corrupted by noise to obtain a clean signal with higher quality. However, the presence of noise in speech signals will contribute to a high degree of inaccuracy in a system that requires speech processing. This idea of noise cancellation for the speech signal was processed through the neural networks. Three methods were tested: 1. The adaptive linear neuron (ADALINE). 2. feed forward neural network enhancement method FFNN 3. wavelet transform and Adaline enhancement Method. The results obtained showed high quality due to fast processing and high signal-noise-ratio. The tested signal was enhanced 10 dB by Adaline, 3 dB by FFNN and 8 dB by Wavelet Transform and Adaline Enhancement Method.</abstract><pub>IEEE</pub><doi>10.1109/SSD.2009.4956823</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424443458
ispartof 2009 6th International Multi-Conference on Systems, Signals and Devices, 2009, p.1-6
issn
language eng
recordid cdi_ieee_primary_4956823
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Discrete wavelet transform
Feedforward neural networks
Feeds
Neural network
Neural networks
Neurons
Noise cancellation
Signal processing
Speech enhancement
Speech processing
Speech signal
Testing
Wavelet transforms
title Speech signal enhancement using neural network and wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Speech%20signal%20enhancement%20using%20neural%20network%20and%20wavelet%20transform&rft.btitle=2009%206th%20International%20Multi-Conference%20on%20Systems,%20Signals%20and%20Devices&rft.au=Daqrouq,%20K.&rft.date=2009-03&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424443458&rft.isbn_list=9781424443451&rft_id=info:doi/10.1109/SSD.2009.4956823&rft_dat=%3Cieee_6IE%3E4956823%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424443468&rft.eisbn_list=1424443466&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4956823&rfr_iscdi=true