Document space dimension reduction by nonlinear Hebbian neural network

This paper deals with information retrieval of text documents, and their clustering into some other feature space. The aim of this paper is to reduce the dimension of the document space by the nonlinear Hebbian neural network. As can be seen from the results, not only dimension reduction of document...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Skovajsova, L., Mokris, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue
container_start_page 89
container_title
container_volume
creator Skovajsova, L.
Mokris, I.
description This paper deals with information retrieval of text documents, and their clustering into some other feature space. The aim of this paper is to reduce the dimension of the document space by the nonlinear Hebbian neural network. As can be seen from the results, not only dimension reduction of document space is made, but also clustering of these documents into clusters. We used here the nonlinear Hebbian neural network, which is feed-forward neural network with unsupervised learning.
doi_str_mv 10.1109/SAMI.2009.4956615
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4956615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4956615</ieee_id><sourcerecordid>4956615</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f4a957e690c55a886f56415de500018a07d3cf93c7f133ade69ce0aeb9f962d33</originalsourceid><addsrcrecordid>eNo1UF9LwzAcjMhAN_sBxJd8gdZfmj9NHsd0bjDxwb2PNPkVol060hbZt7fDeS93B8dxHCGPDArGwDx_Lt-3RQlgCmGkUkzekMxUmolSCK6hhFsy_zesnJH5JWsASs3uSNb3XzBBSC4rcU_WL50bjxgH2p-sQ-rDZPrQRZrQj264qPpMYxfbENEmusG6DjbSiGOy7UTDT5e-H8issW2P2ZUXZL9-3a82-e7jbbta7vJgYMgbYY2sUBlwUlqtVSOVYNKjnBYxbaHy3DWGu6phnFs_JR2Cxdo0RpWe8wV5-qsNiHg4pXC06Xy43sB_ASChTus</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Document space dimension reduction by nonlinear Hebbian neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Skovajsova, L. ; Mokris, I.</creator><creatorcontrib>Skovajsova, L. ; Mokris, I.</creatorcontrib><description>This paper deals with information retrieval of text documents, and their clustering into some other feature space. The aim of this paper is to reduce the dimension of the document space by the nonlinear Hebbian neural network. As can be seen from the results, not only dimension reduction of document space is made, but also clustering of these documents into clusters. We used here the nonlinear Hebbian neural network, which is feed-forward neural network with unsupervised learning.</description><identifier>ISBN: 1424438012</identifier><identifier>ISBN: 9781424438013</identifier><identifier>EISBN: 9781424438020</identifier><identifier>EISBN: 1424438020</identifier><identifier>DOI: 10.1109/SAMI.2009.4956615</identifier><identifier>LCCN: 2009900281</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feedforward neural networks ; Feedforward systems ; Indexing ; Information retrieval ; Matrix decomposition ; Neural networks ; Principal component analysis ; Sparse matrices ; Strontium ; Unsupervised learning</subject><ispartof>2009 7th International Symposium on Applied Machine Intelligence and Informatics, 2009, p.89-91</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4956615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4956615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Skovajsova, L.</creatorcontrib><creatorcontrib>Mokris, I.</creatorcontrib><title>Document space dimension reduction by nonlinear Hebbian neural network</title><title>2009 7th International Symposium on Applied Machine Intelligence and Informatics</title><addtitle>SAMI</addtitle><description>This paper deals with information retrieval of text documents, and their clustering into some other feature space. The aim of this paper is to reduce the dimension of the document space by the nonlinear Hebbian neural network. As can be seen from the results, not only dimension reduction of document space is made, but also clustering of these documents into clusters. We used here the nonlinear Hebbian neural network, which is feed-forward neural network with unsupervised learning.</description><subject>Feedforward neural networks</subject><subject>Feedforward systems</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Matrix decomposition</subject><subject>Neural networks</subject><subject>Principal component analysis</subject><subject>Sparse matrices</subject><subject>Strontium</subject><subject>Unsupervised learning</subject><isbn>1424438012</isbn><isbn>9781424438013</isbn><isbn>9781424438020</isbn><isbn>1424438020</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF9LwzAcjMhAN_sBxJd8gdZfmj9NHsd0bjDxwb2PNPkVol060hbZt7fDeS93B8dxHCGPDArGwDx_Lt-3RQlgCmGkUkzekMxUmolSCK6hhFsy_zesnJH5JWsASs3uSNb3XzBBSC4rcU_WL50bjxgH2p-sQ-rDZPrQRZrQj264qPpMYxfbENEmusG6DjbSiGOy7UTDT5e-H8issW2P2ZUXZL9-3a82-e7jbbta7vJgYMgbYY2sUBlwUlqtVSOVYNKjnBYxbaHy3DWGu6phnFs_JR2Cxdo0RpWe8wV5-qsNiHg4pXC06Xy43sB_ASChTus</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Skovajsova, L.</creator><creator>Mokris, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200901</creationdate><title>Document space dimension reduction by nonlinear Hebbian neural network</title><author>Skovajsova, L. ; Mokris, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f4a957e690c55a886f56415de500018a07d3cf93c7f133ade69ce0aeb9f962d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Feedforward neural networks</topic><topic>Feedforward systems</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Matrix decomposition</topic><topic>Neural networks</topic><topic>Principal component analysis</topic><topic>Sparse matrices</topic><topic>Strontium</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Skovajsova, L.</creatorcontrib><creatorcontrib>Mokris, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Skovajsova, L.</au><au>Mokris, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Document space dimension reduction by nonlinear Hebbian neural network</atitle><btitle>2009 7th International Symposium on Applied Machine Intelligence and Informatics</btitle><stitle>SAMI</stitle><date>2009-01</date><risdate>2009</risdate><spage>89</spage><epage>91</epage><pages>89-91</pages><isbn>1424438012</isbn><isbn>9781424438013</isbn><eisbn>9781424438020</eisbn><eisbn>1424438020</eisbn><abstract>This paper deals with information retrieval of text documents, and their clustering into some other feature space. The aim of this paper is to reduce the dimension of the document space by the nonlinear Hebbian neural network. As can be seen from the results, not only dimension reduction of document space is made, but also clustering of these documents into clusters. We used here the nonlinear Hebbian neural network, which is feed-forward neural network with unsupervised learning.</abstract><pub>IEEE</pub><doi>10.1109/SAMI.2009.4956615</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424438012
ispartof 2009 7th International Symposium on Applied Machine Intelligence and Informatics, 2009, p.89-91
issn
language eng
recordid cdi_ieee_primary_4956615
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feedforward neural networks
Feedforward systems
Indexing
Information retrieval
Matrix decomposition
Neural networks
Principal component analysis
Sparse matrices
Strontium
Unsupervised learning
title Document space dimension reduction by nonlinear Hebbian neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Document%20space%20dimension%20reduction%20by%20nonlinear%20Hebbian%20neural%20network&rft.btitle=2009%207th%20International%20Symposium%20on%20Applied%20Machine%20Intelligence%20and%20Informatics&rft.au=Skovajsova,%20L.&rft.date=2009-01&rft.spage=89&rft.epage=91&rft.pages=89-91&rft.isbn=1424438012&rft.isbn_list=9781424438013&rft_id=info:doi/10.1109/SAMI.2009.4956615&rft_dat=%3Cieee_6IE%3E4956615%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424438020&rft.eisbn_list=1424438020&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4956615&rfr_iscdi=true