Effective strategy for autonomous navigation without prior knowledge in FastSLAM
This paper describes the efficient strategy for planning for autonomous mobile robot navigation using the information which is the resulting probabilistic distribution of position and map acquired by solving the SLAM. In order to estimate good robots position and map, we used a highly efficient vari...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | |
container_start_page | 30 |
container_title | |
container_volume | |
creator | Saitoh, T. Sanpei, M. Kuroda, Y. |
description | This paper describes the efficient strategy for planning for autonomous mobile robot navigation using the information which is the resulting probabilistic distribution of position and map acquired by solving the SLAM. In order to estimate good robots position and map, we used a highly efficient variant of the grid based version of the FastSLAM algorithm. D* Lite algorithm for global path planning, which has the effective replanning at the partial cost field changed, was employed. Because the acquired map in the SLAM is also grid based which indicates the probabilistic existence of the obstacles in each grid, and SLAMs uncertain grid map is utilized to compute the cost field for path planning. In this research, it was proven that the mobile robot could carry out autonomous navigation in the outdoor field without prior information. This paper presented that the mobile robot reached the predefined goal with estimating good position and map simultaneously. |
doi_str_mv | 10.1109/RIISS.2009.4937903 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4937903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4937903</ieee_id><sourcerecordid>4937903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-21b76570d3f1ac3947e4275b6f467b028f184c58098c1751ed48ede0a5d244613</originalsourceid><addsrcrecordid>eNotUM1OwzAYi4QmAaMvAJe8QEf-mp_jNG1QqQhE4Tyl7ZcS2BrUppv29itivvhgy7KN0D0lC0qJeXzP87JcMELMQhiuDOFXKDFKU8GEYCrjcoZuJ1kbIoVS1ygZhm8ygRvJuLlBb2vnoI7-AHiIvY3QnrALPbZjDF3Yh3HAnT341kYfOnz08SuMEf_2fvL8dOG4g6YF7Du8sUMsi-XLHZo5uxsgufAcfW7WH6vntHh9ylfLIvVM0JgyWimZKdJwR23NjVDw17eSTkhVEaYd1aLONDG6piqj0AgNDRCbNdMySfkcPfznegDYToX2tj9tLyfwMy00UGo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Effective strategy for autonomous navigation without prior knowledge in FastSLAM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saitoh, T. ; Sanpei, M. ; Kuroda, Y.</creator><creatorcontrib>Saitoh, T. ; Sanpei, M. ; Kuroda, Y.</creatorcontrib><description>This paper describes the efficient strategy for planning for autonomous mobile robot navigation using the information which is the resulting probabilistic distribution of position and map acquired by solving the SLAM. In order to estimate good robots position and map, we used a highly efficient variant of the grid based version of the FastSLAM algorithm. D* Lite algorithm for global path planning, which has the effective replanning at the partial cost field changed, was employed. Because the acquired map in the SLAM is also grid based which indicates the probabilistic existence of the obstacles in each grid, and SLAMs uncertain grid map is utilized to compute the cost field for path planning. In this research, it was proven that the mobile robot could carry out autonomous navigation in the outdoor field without prior information. This paper presented that the mobile robot reached the predefined goal with estimating good position and map simultaneously.</description><identifier>ISBN: 9781424427536</identifier><identifier>ISBN: 1424427533</identifier><identifier>DOI: 10.1109/RIISS.2009.4937903</identifier><identifier>LCCN: 2008906477</identifier><language>eng</language><publisher>IEEE</publisher><subject>Costs ; Mobile robots ; Navigation ; Orbital robotics ; Particle filters ; Path planning ; Robot sensing systems ; Simultaneous localization and mapping ; Strategic planning ; Trajectory</subject><ispartof>2009 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, 2009, p.30-37</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4937903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4937903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saitoh, T.</creatorcontrib><creatorcontrib>Sanpei, M.</creatorcontrib><creatorcontrib>Kuroda, Y.</creatorcontrib><title>Effective strategy for autonomous navigation without prior knowledge in FastSLAM</title><title>2009 IEEE Workshop on Robotic Intelligence in Informationally Structured Space</title><addtitle>RIISS</addtitle><description>This paper describes the efficient strategy for planning for autonomous mobile robot navigation using the information which is the resulting probabilistic distribution of position and map acquired by solving the SLAM. In order to estimate good robots position and map, we used a highly efficient variant of the grid based version of the FastSLAM algorithm. D* Lite algorithm for global path planning, which has the effective replanning at the partial cost field changed, was employed. Because the acquired map in the SLAM is also grid based which indicates the probabilistic existence of the obstacles in each grid, and SLAMs uncertain grid map is utilized to compute the cost field for path planning. In this research, it was proven that the mobile robot could carry out autonomous navigation in the outdoor field without prior information. This paper presented that the mobile robot reached the predefined goal with estimating good position and map simultaneously.</description><subject>Costs</subject><subject>Mobile robots</subject><subject>Navigation</subject><subject>Orbital robotics</subject><subject>Particle filters</subject><subject>Path planning</subject><subject>Robot sensing systems</subject><subject>Simultaneous localization and mapping</subject><subject>Strategic planning</subject><subject>Trajectory</subject><isbn>9781424427536</isbn><isbn>1424427533</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1OwzAYi4QmAaMvAJe8QEf-mp_jNG1QqQhE4Tyl7ZcS2BrUppv29itivvhgy7KN0D0lC0qJeXzP87JcMELMQhiuDOFXKDFKU8GEYCrjcoZuJ1kbIoVS1ygZhm8ygRvJuLlBb2vnoI7-AHiIvY3QnrALPbZjDF3Yh3HAnT341kYfOnz08SuMEf_2fvL8dOG4g6YF7Du8sUMsi-XLHZo5uxsgufAcfW7WH6vntHh9ylfLIvVM0JgyWimZKdJwR23NjVDw17eSTkhVEaYd1aLONDG6piqj0AgNDRCbNdMySfkcPfznegDYToX2tj9tLyfwMy00UGo</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Saitoh, T.</creator><creator>Sanpei, M.</creator><creator>Kuroda, Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Effective strategy for autonomous navigation without prior knowledge in FastSLAM</title><author>Saitoh, T. ; Sanpei, M. ; Kuroda, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-21b76570d3f1ac3947e4275b6f467b028f184c58098c1751ed48ede0a5d244613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Costs</topic><topic>Mobile robots</topic><topic>Navigation</topic><topic>Orbital robotics</topic><topic>Particle filters</topic><topic>Path planning</topic><topic>Robot sensing systems</topic><topic>Simultaneous localization and mapping</topic><topic>Strategic planning</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Saitoh, T.</creatorcontrib><creatorcontrib>Sanpei, M.</creatorcontrib><creatorcontrib>Kuroda, Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saitoh, T.</au><au>Sanpei, M.</au><au>Kuroda, Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effective strategy for autonomous navigation without prior knowledge in FastSLAM</atitle><btitle>2009 IEEE Workshop on Robotic Intelligence in Informationally Structured Space</btitle><stitle>RIISS</stitle><date>2009-03</date><risdate>2009</risdate><spage>30</spage><epage>37</epage><pages>30-37</pages><isbn>9781424427536</isbn><isbn>1424427533</isbn><abstract>This paper describes the efficient strategy for planning for autonomous mobile robot navigation using the information which is the resulting probabilistic distribution of position and map acquired by solving the SLAM. In order to estimate good robots position and map, we used a highly efficient variant of the grid based version of the FastSLAM algorithm. D* Lite algorithm for global path planning, which has the effective replanning at the partial cost field changed, was employed. Because the acquired map in the SLAM is also grid based which indicates the probabilistic existence of the obstacles in each grid, and SLAMs uncertain grid map is utilized to compute the cost field for path planning. In this research, it was proven that the mobile robot could carry out autonomous navigation in the outdoor field without prior information. This paper presented that the mobile robot reached the predefined goal with estimating good position and map simultaneously.</abstract><pub>IEEE</pub><doi>10.1109/RIISS.2009.4937903</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424427536 |
ispartof | 2009 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, 2009, p.30-37 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4937903 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Costs Mobile robots Navigation Orbital robotics Particle filters Path planning Robot sensing systems Simultaneous localization and mapping Strategic planning Trajectory |
title | Effective strategy for autonomous navigation without prior knowledge in FastSLAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effective%20strategy%20for%20autonomous%20navigation%20without%20prior%20knowledge%20in%20FastSLAM&rft.btitle=2009%20IEEE%20Workshop%20on%20Robotic%20Intelligence%20in%20Informationally%20Structured%20Space&rft.au=Saitoh,%20T.&rft.date=2009-03&rft.spage=30&rft.epage=37&rft.pages=30-37&rft.isbn=9781424427536&rft.isbn_list=1424427533&rft_id=info:doi/10.1109/RIISS.2009.4937903&rft_dat=%3Cieee_6IE%3E4937903%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4937903&rfr_iscdi=true |