Improved hardness results for approximating the chromatic number
First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/>0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | |
container_start_page | 414 |
container_title | |
container_volume | |
creator | Furer, M. |
description | First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/>0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to improve the exponent. A randomized twisting method allows us to completely pack a certain space with copies of a graph without much affecting the independence number. Together with the newest results of M. Bellare et al. (1995), on the number of amortized free bits, it is shown that for every /spl epsiv/>0 the chromatic number cannot be approximated by a factor of N/sup 1/5-/spl epsiv// unless NP=ZPP. Finally, we get polynomial lower bounds in terms of /spl chi/. Unless NP=ZPP, the performance ratio of every polynomial time algorithm approximating the chromatic number of /spl chi/-colorable graphs (i.e., the chromatic number is at most /spl chi/) is at least /spl chi//sup 1/5-o(1/) (where the o-notation is with respect to /spl chi/). |
doi_str_mv | 10.1109/SFCS.1995.492572 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_492572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>492572</ieee_id><sourcerecordid>27434151</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-50e2e506c8f6bb900fbd2add49c5de80f1f40474b3699939b7bbbb28711d94a3</originalsourceid><addsrcrecordid>eNotUEtLxDAYDKjguu5dPOXkrTXPJrkpxdWFBQ-795I0X22lL5NW9N9vZZ3LMMwwDIPQHSUppcQ8Hrb5IaXGyFQYJhW7QDdEU50pqjm9RCvCFEukYPoabWL8JAuk1JzpFXradWMYvsHj2gbfQ4w4QJzbKeJqCNiOi_vTdHZq-g881YDLOgx_ssT93DkIt-iqsm2EzT-v0XH7cszfkv376y5_3icNI3xKJAEGkmSlrjLnDCGV88x6L0wpPWhS0UoQoYTjmTGGG6fcAqYVpd4Iy9fo4Vy77PmaIU5F18QS2tb2MMyxYEpwQSVdgvfnYAMAxRiW7eG3OP_CT9fKVzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27434151</pqid></control><display><type>conference_proceeding</type><title>Improved hardness results for approximating the chromatic number</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Furer, M.</creator><creatorcontrib>Furer, M.</creatorcontrib><description>First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/>0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to improve the exponent. A randomized twisting method allows us to completely pack a certain space with copies of a graph without much affecting the independence number. Together with the newest results of M. Bellare et al. (1995), on the number of amortized free bits, it is shown that for every /spl epsiv/>0 the chromatic number cannot be approximated by a factor of N/sup 1/5-/spl epsiv// unless NP=ZPP. Finally, we get polynomial lower bounds in terms of /spl chi/. Unless NP=ZPP, the performance ratio of every polynomial time algorithm approximating the chromatic number of /spl chi/-colorable graphs (i.e., the chromatic number is at most /spl chi/) is at least /spl chi//sup 1/5-o(1/) (where the o-notation is with respect to /spl chi/).</description><identifier>ISSN: 0272-5428</identifier><identifier>ISBN: 0818671831</identifier><identifier>ISBN: 9780818671838</identifier><identifier>DOI: 10.1109/SFCS.1995.492572</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Computer science ; Error probability ; Mathematics ; Microscopy ; Minimization methods ; Noise measurement ; NP-complete problem ; Polynomials</subject><ispartof>Annual Symposium on Foundations of Computer Science, 1995, p.414-421</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/492572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/492572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Furer, M.</creatorcontrib><title>Improved hardness results for approximating the chromatic number</title><title>Annual Symposium on Foundations of Computer Science</title><addtitle>SFCS</addtitle><description>First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/>0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to improve the exponent. A randomized twisting method allows us to completely pack a certain space with copies of a graph without much affecting the independence number. Together with the newest results of M. Bellare et al. (1995), on the number of amortized free bits, it is shown that for every /spl epsiv/>0 the chromatic number cannot be approximated by a factor of N/sup 1/5-/spl epsiv// unless NP=ZPP. Finally, we get polynomial lower bounds in terms of /spl chi/. Unless NP=ZPP, the performance ratio of every polynomial time algorithm approximating the chromatic number of /spl chi/-colorable graphs (i.e., the chromatic number is at most /spl chi/) is at least /spl chi//sup 1/5-o(1/) (where the o-notation is with respect to /spl chi/).</description><subject>Approximation algorithms</subject><subject>Computer science</subject><subject>Error probability</subject><subject>Mathematics</subject><subject>Microscopy</subject><subject>Minimization methods</subject><subject>Noise measurement</subject><subject>NP-complete problem</subject><subject>Polynomials</subject><issn>0272-5428</issn><isbn>0818671831</isbn><isbn>9780818671838</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtLxDAYDKjguu5dPOXkrTXPJrkpxdWFBQ-795I0X22lL5NW9N9vZZ3LMMwwDIPQHSUppcQ8Hrb5IaXGyFQYJhW7QDdEU50pqjm9RCvCFEukYPoabWL8JAuk1JzpFXradWMYvsHj2gbfQ4w4QJzbKeJqCNiOi_vTdHZq-g881YDLOgx_ssT93DkIt-iqsm2EzT-v0XH7cszfkv376y5_3icNI3xKJAEGkmSlrjLnDCGV88x6L0wpPWhS0UoQoYTjmTGGG6fcAqYVpd4Iy9fo4Vy77PmaIU5F18QS2tb2MMyxYEpwQSVdgvfnYAMAxRiW7eG3OP_CT9fKVzw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Furer, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>Improved hardness results for approximating the chromatic number</title><author>Furer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-50e2e506c8f6bb900fbd2add49c5de80f1f40474b3699939b7bbbb28711d94a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Approximation algorithms</topic><topic>Computer science</topic><topic>Error probability</topic><topic>Mathematics</topic><topic>Microscopy</topic><topic>Minimization methods</topic><topic>Noise measurement</topic><topic>NP-complete problem</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Furer, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Furer, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved hardness results for approximating the chromatic number</atitle><btitle>Annual Symposium on Foundations of Computer Science</btitle><stitle>SFCS</stitle><date>1995</date><risdate>1995</risdate><spage>414</spage><epage>421</epage><pages>414-421</pages><issn>0272-5428</issn><isbn>0818671831</isbn><isbn>9780818671838</isbn><abstract>First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/>0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to improve the exponent. A randomized twisting method allows us to completely pack a certain space with copies of a graph without much affecting the independence number. Together with the newest results of M. Bellare et al. (1995), on the number of amortized free bits, it is shown that for every /spl epsiv/>0 the chromatic number cannot be approximated by a factor of N/sup 1/5-/spl epsiv// unless NP=ZPP. Finally, we get polynomial lower bounds in terms of /spl chi/. Unless NP=ZPP, the performance ratio of every polynomial time algorithm approximating the chromatic number of /spl chi/-colorable graphs (i.e., the chromatic number is at most /spl chi/) is at least /spl chi//sup 1/5-o(1/) (where the o-notation is with respect to /spl chi/).</abstract><pub>IEEE</pub><doi>10.1109/SFCS.1995.492572</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0272-5428 |
ispartof | Annual Symposium on Foundations of Computer Science, 1995, p.414-421 |
issn | 0272-5428 |
language | eng |
recordid | cdi_ieee_primary_492572 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation algorithms Computer science Error probability Mathematics Microscopy Minimization methods Noise measurement NP-complete problem Polynomials |
title | Improved hardness results for approximating the chromatic number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20hardness%20results%20for%20approximating%20the%20chromatic%20number&rft.btitle=Annual%20Symposium%20on%20Foundations%20of%20Computer%20Science&rft.au=Furer,%20M.&rft.date=1995&rft.spage=414&rft.epage=421&rft.pages=414-421&rft.issn=0272-5428&rft.isbn=0818671831&rft.isbn_list=9780818671838&rft_id=info:doi/10.1109/SFCS.1995.492572&rft_dat=%3Cproquest_6IE%3E27434151%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27434151&rft_id=info:pmid/&rft_ieee_id=492572&rfr_iscdi=true |