Improved hardness results for approximating the chromatic number

First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/>0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Furer, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue
container_start_page 414
container_title
container_volume
creator Furer, M.
description First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/>0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to improve the exponent. A randomized twisting method allows us to completely pack a certain space with copies of a graph without much affecting the independence number. Together with the newest results of M. Bellare et al. (1995), on the number of amortized free bits, it is shown that for every /spl epsiv/>0 the chromatic number cannot be approximated by a factor of N/sup 1/5-/spl epsiv// unless NP=ZPP. Finally, we get polynomial lower bounds in terms of /spl chi/. Unless NP=ZPP, the performance ratio of every polynomial time algorithm approximating the chromatic number of /spl chi/-colorable graphs (i.e., the chromatic number is at most /spl chi/) is at least /spl chi//sup 1/5-o(1/) (where the o-notation is with respect to /spl chi/).
doi_str_mv 10.1109/SFCS.1995.492572
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_492572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>492572</ieee_id><sourcerecordid>27434151</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-50e2e506c8f6bb900fbd2add49c5de80f1f40474b3699939b7bbbb28711d94a3</originalsourceid><addsrcrecordid>eNotUEtLxDAYDKjguu5dPOXkrTXPJrkpxdWFBQ-795I0X22lL5NW9N9vZZ3LMMwwDIPQHSUppcQ8Hrb5IaXGyFQYJhW7QDdEU50pqjm9RCvCFEukYPoabWL8JAuk1JzpFXradWMYvsHj2gbfQ4w4QJzbKeJqCNiOi_vTdHZq-g881YDLOgx_ssT93DkIt-iqsm2EzT-v0XH7cszfkv376y5_3icNI3xKJAEGkmSlrjLnDCGV88x6L0wpPWhS0UoQoYTjmTGGG6fcAqYVpd4Iy9fo4Vy77PmaIU5F18QS2tb2MMyxYEpwQSVdgvfnYAMAxRiW7eG3OP_CT9fKVzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27434151</pqid></control><display><type>conference_proceeding</type><title>Improved hardness results for approximating the chromatic number</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Furer, M.</creator><creatorcontrib>Furer, M.</creatorcontrib><description>First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/&gt;0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to improve the exponent. A randomized twisting method allows us to completely pack a certain space with copies of a graph without much affecting the independence number. Together with the newest results of M. Bellare et al. (1995), on the number of amortized free bits, it is shown that for every /spl epsiv/&gt;0 the chromatic number cannot be approximated by a factor of N/sup 1/5-/spl epsiv// unless NP=ZPP. Finally, we get polynomial lower bounds in terms of /spl chi/. Unless NP=ZPP, the performance ratio of every polynomial time algorithm approximating the chromatic number of /spl chi/-colorable graphs (i.e., the chromatic number is at most /spl chi/) is at least /spl chi//sup 1/5-o(1/) (where the o-notation is with respect to /spl chi/).</description><identifier>ISSN: 0272-5428</identifier><identifier>ISBN: 0818671831</identifier><identifier>ISBN: 9780818671838</identifier><identifier>DOI: 10.1109/SFCS.1995.492572</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Computer science ; Error probability ; Mathematics ; Microscopy ; Minimization methods ; Noise measurement ; NP-complete problem ; Polynomials</subject><ispartof>Annual Symposium on Foundations of Computer Science, 1995, p.414-421</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/492572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/492572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Furer, M.</creatorcontrib><title>Improved hardness results for approximating the chromatic number</title><title>Annual Symposium on Foundations of Computer Science</title><addtitle>SFCS</addtitle><description>First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/&gt;0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to improve the exponent. A randomized twisting method allows us to completely pack a certain space with copies of a graph without much affecting the independence number. Together with the newest results of M. Bellare et al. (1995), on the number of amortized free bits, it is shown that for every /spl epsiv/&gt;0 the chromatic number cannot be approximated by a factor of N/sup 1/5-/spl epsiv// unless NP=ZPP. Finally, we get polynomial lower bounds in terms of /spl chi/. Unless NP=ZPP, the performance ratio of every polynomial time algorithm approximating the chromatic number of /spl chi/-colorable graphs (i.e., the chromatic number is at most /spl chi/) is at least /spl chi//sup 1/5-o(1/) (where the o-notation is with respect to /spl chi/).</description><subject>Approximation algorithms</subject><subject>Computer science</subject><subject>Error probability</subject><subject>Mathematics</subject><subject>Microscopy</subject><subject>Minimization methods</subject><subject>Noise measurement</subject><subject>NP-complete problem</subject><subject>Polynomials</subject><issn>0272-5428</issn><isbn>0818671831</isbn><isbn>9780818671838</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtLxDAYDKjguu5dPOXkrTXPJrkpxdWFBQ-795I0X22lL5NW9N9vZZ3LMMwwDIPQHSUppcQ8Hrb5IaXGyFQYJhW7QDdEU50pqjm9RCvCFEukYPoabWL8JAuk1JzpFXradWMYvsHj2gbfQ4w4QJzbKeJqCNiOi_vTdHZq-g881YDLOgx_ssT93DkIt-iqsm2EzT-v0XH7cszfkv376y5_3icNI3xKJAEGkmSlrjLnDCGV88x6L0wpPWhS0UoQoYTjmTGGG6fcAqYVpd4Iy9fo4Vy77PmaIU5F18QS2tb2MMyxYEpwQSVdgvfnYAMAxRiW7eG3OP_CT9fKVzw</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Furer, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>Improved hardness results for approximating the chromatic number</title><author>Furer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-50e2e506c8f6bb900fbd2add49c5de80f1f40474b3699939b7bbbb28711d94a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Approximation algorithms</topic><topic>Computer science</topic><topic>Error probability</topic><topic>Mathematics</topic><topic>Microscopy</topic><topic>Minimization methods</topic><topic>Noise measurement</topic><topic>NP-complete problem</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Furer, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Furer, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved hardness results for approximating the chromatic number</atitle><btitle>Annual Symposium on Foundations of Computer Science</btitle><stitle>SFCS</stitle><date>1995</date><risdate>1995</risdate><spage>414</spage><epage>421</epage><pages>414-421</pages><issn>0272-5428</issn><isbn>0818671831</isbn><isbn>9780818671838</isbn><abstract>First, a simplified geometric proof is presented for the result of C. Lund and M. Yannakakis (1994) saying that for some /spl epsiv/&gt;0 it is NP-hard to approximate the chromatic number of graphs with N vertices by a factor of N/sup /spl epsiv//. Then, more sophisticated techniques are employed to improve the exponent. A randomized twisting method allows us to completely pack a certain space with copies of a graph without much affecting the independence number. Together with the newest results of M. Bellare et al. (1995), on the number of amortized free bits, it is shown that for every /spl epsiv/&gt;0 the chromatic number cannot be approximated by a factor of N/sup 1/5-/spl epsiv// unless NP=ZPP. Finally, we get polynomial lower bounds in terms of /spl chi/. Unless NP=ZPP, the performance ratio of every polynomial time algorithm approximating the chromatic number of /spl chi/-colorable graphs (i.e., the chromatic number is at most /spl chi/) is at least /spl chi//sup 1/5-o(1/) (where the o-notation is with respect to /spl chi/).</abstract><pub>IEEE</pub><doi>10.1109/SFCS.1995.492572</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0272-5428
ispartof Annual Symposium on Foundations of Computer Science, 1995, p.414-421
issn 0272-5428
language eng
recordid cdi_ieee_primary_492572
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Computer science
Error probability
Mathematics
Microscopy
Minimization methods
Noise measurement
NP-complete problem
Polynomials
title Improved hardness results for approximating the chromatic number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20hardness%20results%20for%20approximating%20the%20chromatic%20number&rft.btitle=Annual%20Symposium%20on%20Foundations%20of%20Computer%20Science&rft.au=Furer,%20M.&rft.date=1995&rft.spage=414&rft.epage=421&rft.pages=414-421&rft.issn=0272-5428&rft.isbn=0818671831&rft.isbn_list=9780818671838&rft_id=info:doi/10.1109/SFCS.1995.492572&rft_dat=%3Cproquest_6IE%3E27434151%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27434151&rft_id=info:pmid/&rft_ieee_id=492572&rfr_iscdi=true