Research on obtaining dynamic, robust fault diagnosis rules

This paper is about fault diagnosis rules. Firstly, a redundancy-based rule model is presented, compared with the reduced rule model without redundancy by Rough Set Theory (RST). This model has a robusticity to resist the data loss by sensor failure, as well as the inaccuracy data by sensor error. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chang Feng, Tingdi Zhao, Nuo Zhao, Shuyue Yin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue
container_start_page 106
container_title
container_volume
creator Chang Feng
Tingdi Zhao
Nuo Zhao
Shuyue Yin
description This paper is about fault diagnosis rules. Firstly, a redundancy-based rule model is presented, compared with the reduced rule model without redundancy by Rough Set Theory (RST). This model has a robusticity to resist the data loss by sensor failure, as well as the inaccuracy data by sensor error. Furthermore, considering the constraint of fault diagnosis cost, a dynamic optimization method on the redundancy-based rule model is proposed. The principle of the dynamic optimization model is to maximize the robusticity of rule model under cost constraint. An approach using Genetic Algorithm (GA) is expressed to execute the optimization. Finally, case study on hydraulic pump of civil aeroplane is presented to demonstrate the utility of the proposed model.
doi_str_mv 10.1109/RAMS.2009.4914659
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4914659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4914659</ieee_id><sourcerecordid>4914659</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9997a7fdfbed36bd53e63aa75cc34de2a67a22338a210a31fe7fb16f215d08003</originalsourceid><addsrcrecordid>eNo1kM1KAzEURuNPwbHOA4ibPIBTb3KTyQRXpfgHFaEquCt3JkmNtDMymVn07RWs3-YsDpzFx9ilgJkQYG9W8-fXmQSwM2WFKrU9YudCSaWkBovHLJPamAKsxROWW1P9u0qesgyEsoVQ6mPCMlMVAmVl8IzlKX3B75SWqCFjtyufPPXNJ-9a3tUDxTa2G-72Le1ic837rh7TwAON24G7SJu2SzHxftz6dMEmgbbJ5wdO2fv93dvisVi-PDwt5ssiCqOHwlpryAQXau-wrJ1GXyKR0U2DynlJpSEpESuSAghF8CbUogxSaAcVAE7Z1V83eu_X333cUb9fHz7BH9pcTrU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on obtaining dynamic, robust fault diagnosis rules</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chang Feng ; Tingdi Zhao ; Nuo Zhao ; Shuyue Yin</creator><creatorcontrib>Chang Feng ; Tingdi Zhao ; Nuo Zhao ; Shuyue Yin</creatorcontrib><description>This paper is about fault diagnosis rules. Firstly, a redundancy-based rule model is presented, compared with the reduced rule model without redundancy by Rough Set Theory (RST). This model has a robusticity to resist the data loss by sensor failure, as well as the inaccuracy data by sensor error. Furthermore, considering the constraint of fault diagnosis cost, a dynamic optimization method on the redundancy-based rule model is proposed. The principle of the dynamic optimization model is to maximize the robusticity of rule model under cost constraint. An approach using Genetic Algorithm (GA) is expressed to execute the optimization. Finally, case study on hydraulic pump of civil aeroplane is presented to demonstrate the utility of the proposed model.</description><identifier>ISSN: 0149-144X</identifier><identifier>ISBN: 9781424425082</identifier><identifier>ISBN: 1424425085</identifier><identifier>EISSN: 2577-0993</identifier><identifier>EISBN: 1424425093</identifier><identifier>EISBN: 9781424425099</identifier><identifier>DOI: 10.1109/RAMS.2009.4914659</identifier><identifier>LCCN: 78-132873</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerodynamics ; Constraint optimization ; Cost function ; decision rule ; Fault diagnosis ; genetic algorithm ; Genetic algorithms ; optimization ; Optimization methods ; Redundancy ; Resists ; Robustness ; rough set theory ; Set theory</subject><ispartof>2009 Annual Reliability and Maintainability Symposium, 2009, p.106-111</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4914659$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4914659$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chang Feng</creatorcontrib><creatorcontrib>Tingdi Zhao</creatorcontrib><creatorcontrib>Nuo Zhao</creatorcontrib><creatorcontrib>Shuyue Yin</creatorcontrib><title>Research on obtaining dynamic, robust fault diagnosis rules</title><title>2009 Annual Reliability and Maintainability Symposium</title><addtitle>RAMS</addtitle><description>This paper is about fault diagnosis rules. Firstly, a redundancy-based rule model is presented, compared with the reduced rule model without redundancy by Rough Set Theory (RST). This model has a robusticity to resist the data loss by sensor failure, as well as the inaccuracy data by sensor error. Furthermore, considering the constraint of fault diagnosis cost, a dynamic optimization method on the redundancy-based rule model is proposed. The principle of the dynamic optimization model is to maximize the robusticity of rule model under cost constraint. An approach using Genetic Algorithm (GA) is expressed to execute the optimization. Finally, case study on hydraulic pump of civil aeroplane is presented to demonstrate the utility of the proposed model.</description><subject>Aerodynamics</subject><subject>Constraint optimization</subject><subject>Cost function</subject><subject>decision rule</subject><subject>Fault diagnosis</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>optimization</subject><subject>Optimization methods</subject><subject>Redundancy</subject><subject>Resists</subject><subject>Robustness</subject><subject>rough set theory</subject><subject>Set theory</subject><issn>0149-144X</issn><issn>2577-0993</issn><isbn>9781424425082</isbn><isbn>1424425085</isbn><isbn>1424425093</isbn><isbn>9781424425099</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1KAzEURuNPwbHOA4ibPIBTb3KTyQRXpfgHFaEquCt3JkmNtDMymVn07RWs3-YsDpzFx9ilgJkQYG9W8-fXmQSwM2WFKrU9YudCSaWkBovHLJPamAKsxROWW1P9u0qesgyEsoVQ6mPCMlMVAmVl8IzlKX3B75SWqCFjtyufPPXNJ-9a3tUDxTa2G-72Le1ic837rh7TwAON24G7SJu2SzHxftz6dMEmgbbJ5wdO2fv93dvisVi-PDwt5ssiCqOHwlpryAQXau-wrJ1GXyKR0U2DynlJpSEpESuSAghF8CbUogxSaAcVAE7Z1V83eu_X333cUb9fHz7BH9pcTrU</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Chang Feng</creator><creator>Tingdi Zhao</creator><creator>Nuo Zhao</creator><creator>Shuyue Yin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200901</creationdate><title>Research on obtaining dynamic, robust fault diagnosis rules</title><author>Chang Feng ; Tingdi Zhao ; Nuo Zhao ; Shuyue Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9997a7fdfbed36bd53e63aa75cc34de2a67a22338a210a31fe7fb16f215d08003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerodynamics</topic><topic>Constraint optimization</topic><topic>Cost function</topic><topic>decision rule</topic><topic>Fault diagnosis</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>optimization</topic><topic>Optimization methods</topic><topic>Redundancy</topic><topic>Resists</topic><topic>Robustness</topic><topic>rough set theory</topic><topic>Set theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang Feng</creatorcontrib><creatorcontrib>Tingdi Zhao</creatorcontrib><creatorcontrib>Nuo Zhao</creatorcontrib><creatorcontrib>Shuyue Yin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang Feng</au><au>Tingdi Zhao</au><au>Nuo Zhao</au><au>Shuyue Yin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on obtaining dynamic, robust fault diagnosis rules</atitle><btitle>2009 Annual Reliability and Maintainability Symposium</btitle><stitle>RAMS</stitle><date>2009-01</date><risdate>2009</risdate><spage>106</spage><epage>111</epage><pages>106-111</pages><issn>0149-144X</issn><eissn>2577-0993</eissn><isbn>9781424425082</isbn><isbn>1424425085</isbn><eisbn>1424425093</eisbn><eisbn>9781424425099</eisbn><abstract>This paper is about fault diagnosis rules. Firstly, a redundancy-based rule model is presented, compared with the reduced rule model without redundancy by Rough Set Theory (RST). This model has a robusticity to resist the data loss by sensor failure, as well as the inaccuracy data by sensor error. Furthermore, considering the constraint of fault diagnosis cost, a dynamic optimization method on the redundancy-based rule model is proposed. The principle of the dynamic optimization model is to maximize the robusticity of rule model under cost constraint. An approach using Genetic Algorithm (GA) is expressed to execute the optimization. Finally, case study on hydraulic pump of civil aeroplane is presented to demonstrate the utility of the proposed model.</abstract><pub>IEEE</pub><doi>10.1109/RAMS.2009.4914659</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0149-144X
ispartof 2009 Annual Reliability and Maintainability Symposium, 2009, p.106-111
issn 0149-144X
2577-0993
language eng
recordid cdi_ieee_primary_4914659
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerodynamics
Constraint optimization
Cost function
decision rule
Fault diagnosis
genetic algorithm
Genetic algorithms
optimization
Optimization methods
Redundancy
Resists
Robustness
rough set theory
Set theory
title Research on obtaining dynamic, robust fault diagnosis rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20obtaining%20dynamic,%20robust%20fault%20diagnosis%20rules&rft.btitle=2009%20Annual%20Reliability%20and%20Maintainability%20Symposium&rft.au=Chang%20Feng&rft.date=2009-01&rft.spage=106&rft.epage=111&rft.pages=106-111&rft.issn=0149-144X&rft.eissn=2577-0993&rft.isbn=9781424425082&rft.isbn_list=1424425085&rft_id=info:doi/10.1109/RAMS.2009.4914659&rft_dat=%3Cieee_6IE%3E4914659%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424425093&rft.eisbn_list=9781424425099&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4914659&rfr_iscdi=true