A comparison of forearm EMG and psychophysical EEG signals using statistical signal processing

This paper presents Daubechies 44 (db44) as a mother wavelet function for complex signals of human beings. During the last two decades, wavelet transform has been developing as one of the most powerful processors in various areas of science and technology. Many papers have been documented with diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rafiee, J., Schoen, M.P., Prause, N., Urfer, A., Rafiee, M.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Rafiee, J.
Schoen, M.P.
Prause, N.
Urfer, A.
Rafiee, M.A.
description This paper presents Daubechies 44 (db44) as a mother wavelet function for complex signals of human beings. During the last two decades, wavelet transform has been developing as one of the most powerful processors in various areas of science and technology. Many papers have been documented with different types of mother wavelet functions in various fields using different criteria (e.g. similarity between signals and mother wavelet). To name a few, machine condition monitoring including vibration, acoustic and ultrasonic signals, image processing, Electromyographic (EMG) and Electroencephalographic (EEG) signals have been taken into consideration using wavelet transform. The selection wavelet function represents an ongoing challenge in biosignal processing. This paper focuses on the selection of mother wavelet function for human biological signals. In this research, three measures were analyzed. These include surface and intramuscular EMG of the upper limb and psychophysical EEG in response to visual stimuli. 324 mother wavelet functions from wavelet families; including Haar, Daubechies (db), Symlet, Coiflet, Gaussian, Morlet, complex Morlet, Mexican hat, bio-orthogonal, reverse bio-orthogonal, Meyer, discrete approximation of Meyer, complex Gaussian, Shannon, and frequency B-spline were studied.
doi_str_mv 10.1109/IC4.2009.4909196
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4909196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4909196</ieee_id><sourcerecordid>4909196</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7c90ca2172b7de166909697531647e45d345cc760c5095e35ca5819a4b15f08e3</originalsourceid><addsrcrecordid>eNo1kMtqwzAQRVVKoE3qfaEb_YBdyRpJnmUwrhNI6SbrBkWWE5X4geUu_Pd1m3Q2w3AOl8sQ8sxZwjnD120OScoYJoAMOao7EqHOOKQAQnDI7sny_xCwIMvZzWYTNDyQKIQvNg_IFBU-ks81tV3Tm8GHrqVdTetucGZoaPFeUtNWtA-TPXf9eQremgstipIGf2rNJdDv4NsTDaMZfRj_6JXQfuisC7_0iSzqWXXRba_I_q3Y55t491Fu8_Uu9sjGWFtk1qRcp0ddOa7U3FahloIr0A5kJUBaqxWzkqF0QlojM44GjlzWLHNiRV6usd45d-gH35hhOtzeI34ABbtV3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A comparison of forearm EMG and psychophysical EEG signals using statistical signal processing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rafiee, J. ; Schoen, M.P. ; Prause, N. ; Urfer, A. ; Rafiee, M.A.</creator><creatorcontrib>Rafiee, J. ; Schoen, M.P. ; Prause, N. ; Urfer, A. ; Rafiee, M.A.</creatorcontrib><description>This paper presents Daubechies 44 (db44) as a mother wavelet function for complex signals of human beings. During the last two decades, wavelet transform has been developing as one of the most powerful processors in various areas of science and technology. Many papers have been documented with different types of mother wavelet functions in various fields using different criteria (e.g. similarity between signals and mother wavelet). To name a few, machine condition monitoring including vibration, acoustic and ultrasonic signals, image processing, Electromyographic (EMG) and Electroencephalographic (EEG) signals have been taken into consideration using wavelet transform. The selection wavelet function represents an ongoing challenge in biosignal processing. This paper focuses on the selection of mother wavelet function for human biological signals. In this research, three measures were analyzed. These include surface and intramuscular EMG of the upper limb and psychophysical EEG in response to visual stimuli. 324 mother wavelet functions from wavelet families; including Haar, Daubechies (db), Symlet, Coiflet, Gaussian, Morlet, complex Morlet, Mexican hat, bio-orthogonal, reverse bio-orthogonal, Meyer, discrete approximation of Meyer, complex Gaussian, Shannon, and frequency B-spline were studied.</description><identifier>ISBN: 1424433134</identifier><identifier>ISBN: 9781424433131</identifier><identifier>EISBN: 9781424433148</identifier><identifier>EISBN: 1424433142</identifier><identifier>DOI: 10.1109/IC4.2009.4909196</identifier><identifier>LCCN: 2008909474</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic waves ; Biomedical signal processing ; Condition monitoring ; Daubechies 44 (db44) ; Discrete wavelet transforms ; EEG ; Electroencephalography ; Electromyography ; EMG ; Humans ; mother wavelet ; pattern recognition ; Psychology ; Signal processing ; statistical signal processing ; Wavelet ; Wavelet transforms</subject><ispartof>2009 2nd International Conference on Computer, Control and Communication, 2009, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4909196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4909196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rafiee, J.</creatorcontrib><creatorcontrib>Schoen, M.P.</creatorcontrib><creatorcontrib>Prause, N.</creatorcontrib><creatorcontrib>Urfer, A.</creatorcontrib><creatorcontrib>Rafiee, M.A.</creatorcontrib><title>A comparison of forearm EMG and psychophysical EEG signals using statistical signal processing</title><title>2009 2nd International Conference on Computer, Control and Communication</title><addtitle>IC4</addtitle><description>This paper presents Daubechies 44 (db44) as a mother wavelet function for complex signals of human beings. During the last two decades, wavelet transform has been developing as one of the most powerful processors in various areas of science and technology. Many papers have been documented with different types of mother wavelet functions in various fields using different criteria (e.g. similarity between signals and mother wavelet). To name a few, machine condition monitoring including vibration, acoustic and ultrasonic signals, image processing, Electromyographic (EMG) and Electroencephalographic (EEG) signals have been taken into consideration using wavelet transform. The selection wavelet function represents an ongoing challenge in biosignal processing. This paper focuses on the selection of mother wavelet function for human biological signals. In this research, three measures were analyzed. These include surface and intramuscular EMG of the upper limb and psychophysical EEG in response to visual stimuli. 324 mother wavelet functions from wavelet families; including Haar, Daubechies (db), Symlet, Coiflet, Gaussian, Morlet, complex Morlet, Mexican hat, bio-orthogonal, reverse bio-orthogonal, Meyer, discrete approximation of Meyer, complex Gaussian, Shannon, and frequency B-spline were studied.</description><subject>Acoustic waves</subject><subject>Biomedical signal processing</subject><subject>Condition monitoring</subject><subject>Daubechies 44 (db44)</subject><subject>Discrete wavelet transforms</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>EMG</subject><subject>Humans</subject><subject>mother wavelet</subject><subject>pattern recognition</subject><subject>Psychology</subject><subject>Signal processing</subject><subject>statistical signal processing</subject><subject>Wavelet</subject><subject>Wavelet transforms</subject><isbn>1424433134</isbn><isbn>9781424433131</isbn><isbn>9781424433148</isbn><isbn>1424433142</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtqwzAQRVVKoE3qfaEb_YBdyRpJnmUwrhNI6SbrBkWWE5X4geUu_Pd1m3Q2w3AOl8sQ8sxZwjnD120OScoYJoAMOao7EqHOOKQAQnDI7sny_xCwIMvZzWYTNDyQKIQvNg_IFBU-ks81tV3Tm8GHrqVdTetucGZoaPFeUtNWtA-TPXf9eQremgstipIGf2rNJdDv4NsTDaMZfRj_6JXQfuisC7_0iSzqWXXRba_I_q3Y55t491Fu8_Uu9sjGWFtk1qRcp0ddOa7U3FahloIr0A5kJUBaqxWzkqF0QlojM44GjlzWLHNiRV6usd45d-gH35hhOtzeI34ABbtV3g</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Rafiee, J.</creator><creator>Schoen, M.P.</creator><creator>Prause, N.</creator><creator>Urfer, A.</creator><creator>Rafiee, M.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200902</creationdate><title>A comparison of forearm EMG and psychophysical EEG signals using statistical signal processing</title><author>Rafiee, J. ; Schoen, M.P. ; Prause, N. ; Urfer, A. ; Rafiee, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7c90ca2172b7de166909697531647e45d345cc760c5095e35ca5819a4b15f08e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic waves</topic><topic>Biomedical signal processing</topic><topic>Condition monitoring</topic><topic>Daubechies 44 (db44)</topic><topic>Discrete wavelet transforms</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>EMG</topic><topic>Humans</topic><topic>mother wavelet</topic><topic>pattern recognition</topic><topic>Psychology</topic><topic>Signal processing</topic><topic>statistical signal processing</topic><topic>Wavelet</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Rafiee, J.</creatorcontrib><creatorcontrib>Schoen, M.P.</creatorcontrib><creatorcontrib>Prause, N.</creatorcontrib><creatorcontrib>Urfer, A.</creatorcontrib><creatorcontrib>Rafiee, M.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rafiee, J.</au><au>Schoen, M.P.</au><au>Prause, N.</au><au>Urfer, A.</au><au>Rafiee, M.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparison of forearm EMG and psychophysical EEG signals using statistical signal processing</atitle><btitle>2009 2nd International Conference on Computer, Control and Communication</btitle><stitle>IC4</stitle><date>2009-02</date><risdate>2009</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1424433134</isbn><isbn>9781424433131</isbn><eisbn>9781424433148</eisbn><eisbn>1424433142</eisbn><abstract>This paper presents Daubechies 44 (db44) as a mother wavelet function for complex signals of human beings. During the last two decades, wavelet transform has been developing as one of the most powerful processors in various areas of science and technology. Many papers have been documented with different types of mother wavelet functions in various fields using different criteria (e.g. similarity between signals and mother wavelet). To name a few, machine condition monitoring including vibration, acoustic and ultrasonic signals, image processing, Electromyographic (EMG) and Electroencephalographic (EEG) signals have been taken into consideration using wavelet transform. The selection wavelet function represents an ongoing challenge in biosignal processing. This paper focuses on the selection of mother wavelet function for human biological signals. In this research, three measures were analyzed. These include surface and intramuscular EMG of the upper limb and psychophysical EEG in response to visual stimuli. 324 mother wavelet functions from wavelet families; including Haar, Daubechies (db), Symlet, Coiflet, Gaussian, Morlet, complex Morlet, Mexican hat, bio-orthogonal, reverse bio-orthogonal, Meyer, discrete approximation of Meyer, complex Gaussian, Shannon, and frequency B-spline were studied.</abstract><pub>IEEE</pub><doi>10.1109/IC4.2009.4909196</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424433134
ispartof 2009 2nd International Conference on Computer, Control and Communication, 2009, p.1-5
issn
language eng
recordid cdi_ieee_primary_4909196
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic waves
Biomedical signal processing
Condition monitoring
Daubechies 44 (db44)
Discrete wavelet transforms
EEG
Electroencephalography
Electromyography
EMG
Humans
mother wavelet
pattern recognition
Psychology
Signal processing
statistical signal processing
Wavelet
Wavelet transforms
title A comparison of forearm EMG and psychophysical EEG signals using statistical signal processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparison%20of%20forearm%20EMG%20and%20psychophysical%20EEG%20signals%20using%20statistical%20signal%20processing&rft.btitle=2009%202nd%20International%20Conference%20on%20Computer,%20Control%20and%20Communication&rft.au=Rafiee,%20J.&rft.date=2009-02&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1424433134&rft.isbn_list=9781424433131&rft_id=info:doi/10.1109/IC4.2009.4909196&rft_dat=%3Cieee_6IE%3E4909196%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424433148&rft.eisbn_list=1424433142&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4909196&rfr_iscdi=true