An efficient algorithm in extracting human iris Morphological features
The interface of computer technologies and biology is having a huge impact on society. Human recognition research projects promises new life to many security-consulting firms and personal identification system manufacturers. Iris recognition is considered to be the most reliable biometric authentica...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 146 |
container_title | |
container_volume | |
creator | Mohamed, M.A. Abou-Elsoud, M.E.A. Eid, M.M. |
description | The interface of computer technologies and biology is having a huge impact on society. Human recognition research projects promises new life to many security-consulting firms and personal identification system manufacturers. Iris recognition is considered to be the most reliable biometric authentication system. Very few iris recognition algorithms were commercialized. The method proposed in this paper differed from the existing work in the iris segmentation and feature extraction phase. Digitized grayscale images of Chinese Academy of Sciences-Institute of Automation (CASIA) database were used for determining the performance of the proposed system. The circular iris and pupil of the eye image were segmented using morphological operators and Hough transform. The localized iris region was then normalized in to a rectangular block to account for imaging inconsistencies. This method provides accurate features as well as simple and fast iris analysis methods. |
doi_str_mv | 10.1109/ICNM.2009.4907207 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4907207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4907207</ieee_id><sourcerecordid>4907207</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-88c7a8633e02b3148588124a034cd78076a37bb08c917bed429c04c92d3621763</originalsourceid><addsrcrecordid>eNpVkMtOwzAURI1QJaDkAxAb_0DC9SP29bKKKFRqYdN95ThOYpRH5aQS_D2R6IbZjOZoNIsh5IlBxhiYl13xccg4gMmkAc1B35DEaGSSSym0Rrz9l5VckYeljoZxhuqOJNP0BYtkznXO78l2M1Bf18EFP8zUds0Yw9z2NCz4e47WzWFoaHvp7UBDDBM9jPHcjt3YBGc7Wns7X6KfHsmqtt3kk6uvyXH7eize0_3n267Y7NNgYE4RnbaohPDAS8Ek5oiMSwtCukojaGWFLktAZ5gufSW5cSCd4ZVQnGkl1uT5bzZ470_nGHobf07XJ8QvmixOQw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An efficient algorithm in extracting human iris Morphological features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mohamed, M.A. ; Abou-Elsoud, M.E.A. ; Eid, M.M.</creator><creatorcontrib>Mohamed, M.A. ; Abou-Elsoud, M.E.A. ; Eid, M.M.</creatorcontrib><description>The interface of computer technologies and biology is having a huge impact on society. Human recognition research projects promises new life to many security-consulting firms and personal identification system manufacturers. Iris recognition is considered to be the most reliable biometric authentication system. Very few iris recognition algorithms were commercialized. The method proposed in this paper differed from the existing work in the iris segmentation and feature extraction phase. Digitized grayscale images of Chinese Academy of Sciences-Institute of Automation (CASIA) database were used for determining the performance of the proposed system. The circular iris and pupil of the eye image were segmented using morphological operators and Hough transform. The localized iris region was then normalized in to a rectangular block to account for imaging inconsistencies. This method provides accurate features as well as simple and fast iris analysis methods.</description><identifier>ISBN: 9781424437764</identifier><identifier>ISBN: 1424437768</identifier><identifier>EISBN: 9781424437788</identifier><identifier>EISBN: 1424437784</identifier><identifier>DOI: 10.1109/ICNM.2009.4907207</identifier><identifier>LCCN: 2008912186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Authentication ; Biology computing ; Biometrics ; Commercialization ; Computer interfaces ; Feature extraction ; Humans ; Image segmentation ; Iris recognition ; Manufacturing</subject><ispartof>2009 International Conference on Networking and Media Convergence, 2009, p.146-150</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4907207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4907207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohamed, M.A.</creatorcontrib><creatorcontrib>Abou-Elsoud, M.E.A.</creatorcontrib><creatorcontrib>Eid, M.M.</creatorcontrib><title>An efficient algorithm in extracting human iris Morphological features</title><title>2009 International Conference on Networking and Media Convergence</title><addtitle>ICNM</addtitle><description>The interface of computer technologies and biology is having a huge impact on society. Human recognition research projects promises new life to many security-consulting firms and personal identification system manufacturers. Iris recognition is considered to be the most reliable biometric authentication system. Very few iris recognition algorithms were commercialized. The method proposed in this paper differed from the existing work in the iris segmentation and feature extraction phase. Digitized grayscale images of Chinese Academy of Sciences-Institute of Automation (CASIA) database were used for determining the performance of the proposed system. The circular iris and pupil of the eye image were segmented using morphological operators and Hough transform. The localized iris region was then normalized in to a rectangular block to account for imaging inconsistencies. This method provides accurate features as well as simple and fast iris analysis methods.</description><subject>Authentication</subject><subject>Biology computing</subject><subject>Biometrics</subject><subject>Commercialization</subject><subject>Computer interfaces</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Iris recognition</subject><subject>Manufacturing</subject><isbn>9781424437764</isbn><isbn>1424437768</isbn><isbn>9781424437788</isbn><isbn>1424437784</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURI1QJaDkAxAb_0DC9SP29bKKKFRqYdN95ThOYpRH5aQS_D2R6IbZjOZoNIsh5IlBxhiYl13xccg4gMmkAc1B35DEaGSSSym0Rrz9l5VckYeljoZxhuqOJNP0BYtkznXO78l2M1Bf18EFP8zUds0Yw9z2NCz4e47WzWFoaHvp7UBDDBM9jPHcjt3YBGc7Wns7X6KfHsmqtt3kk6uvyXH7eize0_3n267Y7NNgYE4RnbaohPDAS8Ek5oiMSwtCukojaGWFLktAZ5gufSW5cSCd4ZVQnGkl1uT5bzZ470_nGHobf07XJ8QvmixOQw</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Mohamed, M.A.</creator><creator>Abou-Elsoud, M.E.A.</creator><creator>Eid, M.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>An efficient algorithm in extracting human iris Morphological features</title><author>Mohamed, M.A. ; Abou-Elsoud, M.E.A. ; Eid, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-88c7a8633e02b3148588124a034cd78076a37bb08c917bed429c04c92d3621763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Authentication</topic><topic>Biology computing</topic><topic>Biometrics</topic><topic>Commercialization</topic><topic>Computer interfaces</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Iris recognition</topic><topic>Manufacturing</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, M.A.</creatorcontrib><creatorcontrib>Abou-Elsoud, M.E.A.</creatorcontrib><creatorcontrib>Eid, M.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohamed, M.A.</au><au>Abou-Elsoud, M.E.A.</au><au>Eid, M.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An efficient algorithm in extracting human iris Morphological features</atitle><btitle>2009 International Conference on Networking and Media Convergence</btitle><stitle>ICNM</stitle><date>2009-03</date><risdate>2009</risdate><spage>146</spage><epage>150</epage><pages>146-150</pages><isbn>9781424437764</isbn><isbn>1424437768</isbn><eisbn>9781424437788</eisbn><eisbn>1424437784</eisbn><abstract>The interface of computer technologies and biology is having a huge impact on society. Human recognition research projects promises new life to many security-consulting firms and personal identification system manufacturers. Iris recognition is considered to be the most reliable biometric authentication system. Very few iris recognition algorithms were commercialized. The method proposed in this paper differed from the existing work in the iris segmentation and feature extraction phase. Digitized grayscale images of Chinese Academy of Sciences-Institute of Automation (CASIA) database were used for determining the performance of the proposed system. The circular iris and pupil of the eye image were segmented using morphological operators and Hough transform. The localized iris region was then normalized in to a rectangular block to account for imaging inconsistencies. This method provides accurate features as well as simple and fast iris analysis methods.</abstract><pub>IEEE</pub><doi>10.1109/ICNM.2009.4907207</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424437764 |
ispartof | 2009 International Conference on Networking and Media Convergence, 2009, p.146-150 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4907207 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Authentication Biology computing Biometrics Commercialization Computer interfaces Feature extraction Humans Image segmentation Iris recognition Manufacturing |
title | An efficient algorithm in extracting human iris Morphological features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20efficient%20algorithm%20in%20extracting%20human%20iris%20Morphological%20features&rft.btitle=2009%20International%20Conference%20on%20Networking%20and%20Media%20Convergence&rft.au=Mohamed,%20M.A.&rft.date=2009-03&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.isbn=9781424437764&rft.isbn_list=1424437768&rft_id=info:doi/10.1109/ICNM.2009.4907207&rft_dat=%3Cieee_6IE%3E4907207%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424437788&rft.eisbn_list=1424437784&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4907207&rfr_iscdi=true |