Image processing and machine learning for diagnostic analysis of microcirculation

This study focuses on detection of capillaries and small blood vessels in the videos recorded from the lingual surface using Microscan SDF system. The purpose of this study is to quantitatively monitor and assess the changes that occur in microcirculation during resuscitation period. The results ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Demir, S., Mirshahi, N., Tiba, M.H., Draucker, G., Ward, K., Hobson, R., Najarian, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Demir, S.
Mirshahi, N.
Tiba, M.H.
Draucker, G.
Ward, K.
Hobson, R.
Najarian, K.
description This study focuses on detection of capillaries and small blood vessels in the videos recorded from the lingual surface using Microscan SDF system. The purpose of this study is to quantitatively monitor and assess the changes that occur in microcirculation during resuscitation period. The results assist physicians in making diagnostically and therapeutically important decisions such as determination of the effectiveness of the resuscitation process. The proposed algorithm applies advanced digital image processing methods to provide quantitative assessment of video signals for detection and characterization of capillaries. The objective of the algorithm is to segment capillaries, estimate the presence and velocity of Red Blood Cells (RBCs), and identify the distribution of blood flow in capillaries for a variety of normal and abnormal cases. The algorithm first, stabilizes each frame to follow the variations in the consecutive frames. Then, time-averaging techniques are applied to the frames to reduce the motion artifact. Histogram equalization, wavelet transform, and median filtering are the subsequent steps applied to accurately detect the blood vessels in each frame. In order to estimate the velocity of RBCs, space time diagrams are obtained through cross-correlation calculations. This study aims to reduce the human interaction as well as the computation time.
doi_str_mv 10.1109/ICCME.2009.4906669
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4906669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4906669</ieee_id><sourcerecordid>4906669</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-39d20b8e54aa3fc8ee9f638e04787be58bae9fe35edb17c162690884acf3afae3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI1QJaDkBeDiF0iw45_YRxQVGqkIIfVebZx1MEqcKi6Hvj1B9MJcVjP6dqUdQh44Kzhn9qmp67dNUTJmC2mZ1tpekcxWhstSSiG4Lq__eaVW5G7BjWVWVuUNyVL6YoukElLLW_LRjNAjPc6Tw5RC7CnEjo7gPkNEOiDM8Tf000y7AH2c0im4hYHhnEKik6djcMtymN33AKcwxXuy8jAkzC5zTfYvm329zXfvr039vMuDZadc2K5krUElAYR3BtF6LQwyWZmqRWVaWBIUCruWV255TFtmjATnBXhAsSaPf2cDIh6OcxhhPh8upYgflc9VIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image processing and machine learning for diagnostic analysis of microcirculation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Demir, S. ; Mirshahi, N. ; Tiba, M.H. ; Draucker, G. ; Ward, K. ; Hobson, R. ; Najarian, K.</creator><creatorcontrib>Demir, S. ; Mirshahi, N. ; Tiba, M.H. ; Draucker, G. ; Ward, K. ; Hobson, R. ; Najarian, K.</creatorcontrib><description>This study focuses on detection of capillaries and small blood vessels in the videos recorded from the lingual surface using Microscan SDF system. The purpose of this study is to quantitatively monitor and assess the changes that occur in microcirculation during resuscitation period. The results assist physicians in making diagnostically and therapeutically important decisions such as determination of the effectiveness of the resuscitation process. The proposed algorithm applies advanced digital image processing methods to provide quantitative assessment of video signals for detection and characterization of capillaries. The objective of the algorithm is to segment capillaries, estimate the presence and velocity of Red Blood Cells (RBCs), and identify the distribution of blood flow in capillaries for a variety of normal and abnormal cases. The algorithm first, stabilizes each frame to follow the variations in the consecutive frames. Then, time-averaging techniques are applied to the frames to reduce the motion artifact. Histogram equalization, wavelet transform, and median filtering are the subsequent steps applied to accurately detect the blood vessels in each frame. In order to estimate the velocity of RBCs, space time diagrams are obtained through cross-correlation calculations. This study aims to reduce the human interaction as well as the computation time.</description><identifier>ISBN: 9781424433155</identifier><identifier>ISBN: 1424433150</identifier><identifier>EISBN: 9781424433162</identifier><identifier>EISBN: 1424433169</identifier><identifier>DOI: 10.1109/ICCME.2009.4906669</identifier><identifier>LCCN: 2008909472</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Blood vessels ; Digital images ; Image analysis ; Image processing ; Machine learning ; Monitoring ; Signal detection ; Signal processing ; Videos</subject><ispartof>2009 ICME International Conference on Complex Medical Engineering, 2009, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4906669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4906669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Demir, S.</creatorcontrib><creatorcontrib>Mirshahi, N.</creatorcontrib><creatorcontrib>Tiba, M.H.</creatorcontrib><creatorcontrib>Draucker, G.</creatorcontrib><creatorcontrib>Ward, K.</creatorcontrib><creatorcontrib>Hobson, R.</creatorcontrib><creatorcontrib>Najarian, K.</creatorcontrib><title>Image processing and machine learning for diagnostic analysis of microcirculation</title><title>2009 ICME International Conference on Complex Medical Engineering</title><addtitle>ICCME</addtitle><description>This study focuses on detection of capillaries and small blood vessels in the videos recorded from the lingual surface using Microscan SDF system. The purpose of this study is to quantitatively monitor and assess the changes that occur in microcirculation during resuscitation period. The results assist physicians in making diagnostically and therapeutically important decisions such as determination of the effectiveness of the resuscitation process. The proposed algorithm applies advanced digital image processing methods to provide quantitative assessment of video signals for detection and characterization of capillaries. The objective of the algorithm is to segment capillaries, estimate the presence and velocity of Red Blood Cells (RBCs), and identify the distribution of blood flow in capillaries for a variety of normal and abnormal cases. The algorithm first, stabilizes each frame to follow the variations in the consecutive frames. Then, time-averaging techniques are applied to the frames to reduce the motion artifact. Histogram equalization, wavelet transform, and median filtering are the subsequent steps applied to accurately detect the blood vessels in each frame. In order to estimate the velocity of RBCs, space time diagrams are obtained through cross-correlation calculations. This study aims to reduce the human interaction as well as the computation time.</description><subject>Biomedical imaging</subject><subject>Blood vessels</subject><subject>Digital images</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Videos</subject><isbn>9781424433155</isbn><isbn>1424433150</isbn><isbn>9781424433162</isbn><isbn>1424433169</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhI1QJaDkBeDiF0iw45_YRxQVGqkIIfVebZx1MEqcKi6Hvj1B9MJcVjP6dqUdQh44Kzhn9qmp67dNUTJmC2mZ1tpekcxWhstSSiG4Lq__eaVW5G7BjWVWVuUNyVL6YoukElLLW_LRjNAjPc6Tw5RC7CnEjo7gPkNEOiDM8Tf000y7AH2c0im4hYHhnEKik6djcMtymN33AKcwxXuy8jAkzC5zTfYvm329zXfvr039vMuDZadc2K5krUElAYR3BtF6LQwyWZmqRWVaWBIUCruWV255TFtmjATnBXhAsSaPf2cDIh6OcxhhPh8upYgflc9VIQ</recordid><startdate>200904</startdate><enddate>200904</enddate><creator>Demir, S.</creator><creator>Mirshahi, N.</creator><creator>Tiba, M.H.</creator><creator>Draucker, G.</creator><creator>Ward, K.</creator><creator>Hobson, R.</creator><creator>Najarian, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200904</creationdate><title>Image processing and machine learning for diagnostic analysis of microcirculation</title><author>Demir, S. ; Mirshahi, N. ; Tiba, M.H. ; Draucker, G. ; Ward, K. ; Hobson, R. ; Najarian, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-39d20b8e54aa3fc8ee9f638e04787be58bae9fe35edb17c162690884acf3afae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomedical imaging</topic><topic>Blood vessels</topic><topic>Digital images</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>Demir, S.</creatorcontrib><creatorcontrib>Mirshahi, N.</creatorcontrib><creatorcontrib>Tiba, M.H.</creatorcontrib><creatorcontrib>Draucker, G.</creatorcontrib><creatorcontrib>Ward, K.</creatorcontrib><creatorcontrib>Hobson, R.</creatorcontrib><creatorcontrib>Najarian, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Demir, S.</au><au>Mirshahi, N.</au><au>Tiba, M.H.</au><au>Draucker, G.</au><au>Ward, K.</au><au>Hobson, R.</au><au>Najarian, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image processing and machine learning for diagnostic analysis of microcirculation</atitle><btitle>2009 ICME International Conference on Complex Medical Engineering</btitle><stitle>ICCME</stitle><date>2009-04</date><risdate>2009</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781424433155</isbn><isbn>1424433150</isbn><eisbn>9781424433162</eisbn><eisbn>1424433169</eisbn><abstract>This study focuses on detection of capillaries and small blood vessels in the videos recorded from the lingual surface using Microscan SDF system. The purpose of this study is to quantitatively monitor and assess the changes that occur in microcirculation during resuscitation period. The results assist physicians in making diagnostically and therapeutically important decisions such as determination of the effectiveness of the resuscitation process. The proposed algorithm applies advanced digital image processing methods to provide quantitative assessment of video signals for detection and characterization of capillaries. The objective of the algorithm is to segment capillaries, estimate the presence and velocity of Red Blood Cells (RBCs), and identify the distribution of blood flow in capillaries for a variety of normal and abnormal cases. The algorithm first, stabilizes each frame to follow the variations in the consecutive frames. Then, time-averaging techniques are applied to the frames to reduce the motion artifact. Histogram equalization, wavelet transform, and median filtering are the subsequent steps applied to accurately detect the blood vessels in each frame. In order to estimate the velocity of RBCs, space time diagrams are obtained through cross-correlation calculations. This study aims to reduce the human interaction as well as the computation time.</abstract><pub>IEEE</pub><doi>10.1109/ICCME.2009.4906669</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424433155
ispartof 2009 ICME International Conference on Complex Medical Engineering, 2009, p.1-5
issn
language eng
recordid cdi_ieee_primary_4906669
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Blood vessels
Digital images
Image analysis
Image processing
Machine learning
Monitoring
Signal detection
Signal processing
Videos
title Image processing and machine learning for diagnostic analysis of microcirculation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20processing%20and%20machine%20learning%20for%20diagnostic%20analysis%20of%20microcirculation&rft.btitle=2009%20ICME%20International%20Conference%20on%20Complex%20Medical%20Engineering&rft.au=Demir,%20S.&rft.date=2009-04&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781424433155&rft.isbn_list=1424433150&rft_id=info:doi/10.1109/ICCME.2009.4906669&rft_dat=%3Cieee_6IE%3E4906669%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424433162&rft.eisbn_list=1424433169&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4906669&rfr_iscdi=true