Feature-aided global nearest pattern matching with non-Gaussian feature measurement errors

System-level discrimination performance for missile defense relies on how well data can be associated between participating sensors. Under the existing architecture, there may be a handover of tracks between two sensors in which tracks formed by one sensor are passed to another sensor to improve kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fercho, T., Papageorgiou, D.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title
container_volume
creator Fercho, T.
Papageorgiou, D.J.
description System-level discrimination performance for missile defense relies on how well data can be associated between participating sensors. Under the existing architecture, there may be a handover of tracks between two sensors in which tracks formed by one sensor are passed to another sensor to improve knowledge of the targets. The global nearest pattern matching (GNPM) problem is a mathematical programming formulation that has proven to be successful at correctly correlating tracks based solely on kinematic data from two sensors, while simultaneously removing inter-sensor bias and accounting for false tracks and missed detections. Despite this success, there is continued interest to improve correlation performance by exploiting feature data collected on targets. This paper addresses this issue by extending the GNPM formulation to account for feature observations whose measurement errors follow an arbitrary distribution. This is accomplished by augmenting the GNPM likelihood function to include a term representing the incremental likelihood of track-to-track assignments based solely on feature observations. Computational results are presented to illustrate the success of this approach.
doi_str_mv 10.1109/AERO.2009.4839481
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4839481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4839481</ieee_id><sourcerecordid>4839481</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4f97710aa0f46a81e2ca2109c8f6fe611fbb4f8a3300c646f04b9b3c21dcdf213</originalsourceid><addsrcrecordid>eNpFkM1qAjEUhdM_qNo-QOkmLxCb3MSYLEXUFgShuCjdyJ2ZG01xRkkipW9fwUJX3-LwHQ6HsSclh0pJ_zKZva-GIKUfGqe9ceqK9ZUBY8ACjK9ZD7y3AvTI3fwHyt-y3tkeCQ364571c_6SEiQ42WOfc8JySiQwNtTw7f5Q4Z53hIly4UcshVLHWyz1LnZb_h3LjneHTizwlHPEjoeLz1vCfGZLXeGU0iHlB3YXcJ_p8Y8Dtp7P1tNXsVwt3qaTpYheFmGCH4-VRJTBWHSKoEY4r61dsIGsUqGqTHCotZS1NTZIU_lK16Caugmg9IA9X2ojEW2OKbaYfjZ__-hfiQVXYA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature-aided global nearest pattern matching with non-Gaussian feature measurement errors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fercho, T. ; Papageorgiou, D.J.</creator><creatorcontrib>Fercho, T. ; Papageorgiou, D.J.</creatorcontrib><description>System-level discrimination performance for missile defense relies on how well data can be associated between participating sensors. Under the existing architecture, there may be a handover of tracks between two sensors in which tracks formed by one sensor are passed to another sensor to improve knowledge of the targets. The global nearest pattern matching (GNPM) problem is a mathematical programming formulation that has proven to be successful at correctly correlating tracks based solely on kinematic data from two sensors, while simultaneously removing inter-sensor bias and accounting for false tracks and missed detections. Despite this success, there is continued interest to improve correlation performance by exploiting feature data collected on targets. This paper addresses this issue by extending the GNPM formulation to account for feature observations whose measurement errors follow an arbitrary distribution. This is accomplished by augmenting the GNPM likelihood function to include a term representing the incremental likelihood of track-to-track assignments based solely on feature observations. Computational results are presented to illustrate the success of this approach.</description><identifier>ISSN: 1095-323X</identifier><identifier>ISBN: 1424426219</identifier><identifier>ISBN: 9781424426218</identifier><identifier>EISSN: 2996-2358</identifier><identifier>EISBN: 1424426227</identifier><identifier>EISBN: 9781424426225</identifier><identifier>DOI: 10.1109/AERO.2009.4839481</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biographies ; Gaussian distribution ; Kinematics ; Mathematical programming ; Measurement errors ; Missiles ; Pattern matching ; Radar tracking ; Sensor systems ; Target tracking</subject><ispartof>2009 IEEE Aerospace conference, 2009, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4839481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4839481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fercho, T.</creatorcontrib><creatorcontrib>Papageorgiou, D.J.</creatorcontrib><title>Feature-aided global nearest pattern matching with non-Gaussian feature measurement errors</title><title>2009 IEEE Aerospace conference</title><addtitle>AERO</addtitle><description>System-level discrimination performance for missile defense relies on how well data can be associated between participating sensors. Under the existing architecture, there may be a handover of tracks between two sensors in which tracks formed by one sensor are passed to another sensor to improve knowledge of the targets. The global nearest pattern matching (GNPM) problem is a mathematical programming formulation that has proven to be successful at correctly correlating tracks based solely on kinematic data from two sensors, while simultaneously removing inter-sensor bias and accounting for false tracks and missed detections. Despite this success, there is continued interest to improve correlation performance by exploiting feature data collected on targets. This paper addresses this issue by extending the GNPM formulation to account for feature observations whose measurement errors follow an arbitrary distribution. This is accomplished by augmenting the GNPM likelihood function to include a term representing the incremental likelihood of track-to-track assignments based solely on feature observations. Computational results are presented to illustrate the success of this approach.</description><subject>Biographies</subject><subject>Gaussian distribution</subject><subject>Kinematics</subject><subject>Mathematical programming</subject><subject>Measurement errors</subject><subject>Missiles</subject><subject>Pattern matching</subject><subject>Radar tracking</subject><subject>Sensor systems</subject><subject>Target tracking</subject><issn>1095-323X</issn><issn>2996-2358</issn><isbn>1424426219</isbn><isbn>9781424426218</isbn><isbn>1424426227</isbn><isbn>9781424426225</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1qAjEUhdM_qNo-QOkmLxCb3MSYLEXUFgShuCjdyJ2ZG01xRkkipW9fwUJX3-LwHQ6HsSclh0pJ_zKZva-GIKUfGqe9ceqK9ZUBY8ACjK9ZD7y3AvTI3fwHyt-y3tkeCQ364571c_6SEiQ42WOfc8JySiQwNtTw7f5Q4Z53hIly4UcshVLHWyz1LnZb_h3LjneHTizwlHPEjoeLz1vCfGZLXeGU0iHlB3YXcJ_p8Y8Dtp7P1tNXsVwt3qaTpYheFmGCH4-VRJTBWHSKoEY4r61dsIGsUqGqTHCotZS1NTZIU_lK16Caugmg9IA9X2ojEW2OKbaYfjZ__-hfiQVXYA</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Fercho, T.</creator><creator>Papageorgiou, D.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>Feature-aided global nearest pattern matching with non-Gaussian feature measurement errors</title><author>Fercho, T. ; Papageorgiou, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4f97710aa0f46a81e2ca2109c8f6fe611fbb4f8a3300c646f04b9b3c21dcdf213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biographies</topic><topic>Gaussian distribution</topic><topic>Kinematics</topic><topic>Mathematical programming</topic><topic>Measurement errors</topic><topic>Missiles</topic><topic>Pattern matching</topic><topic>Radar tracking</topic><topic>Sensor systems</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Fercho, T.</creatorcontrib><creatorcontrib>Papageorgiou, D.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fercho, T.</au><au>Papageorgiou, D.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature-aided global nearest pattern matching with non-Gaussian feature measurement errors</atitle><btitle>2009 IEEE Aerospace conference</btitle><stitle>AERO</stitle><date>2009-03</date><risdate>2009</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1095-323X</issn><eissn>2996-2358</eissn><isbn>1424426219</isbn><isbn>9781424426218</isbn><eisbn>1424426227</eisbn><eisbn>9781424426225</eisbn><abstract>System-level discrimination performance for missile defense relies on how well data can be associated between participating sensors. Under the existing architecture, there may be a handover of tracks between two sensors in which tracks formed by one sensor are passed to another sensor to improve knowledge of the targets. The global nearest pattern matching (GNPM) problem is a mathematical programming formulation that has proven to be successful at correctly correlating tracks based solely on kinematic data from two sensors, while simultaneously removing inter-sensor bias and accounting for false tracks and missed detections. Despite this success, there is continued interest to improve correlation performance by exploiting feature data collected on targets. This paper addresses this issue by extending the GNPM formulation to account for feature observations whose measurement errors follow an arbitrary distribution. This is accomplished by augmenting the GNPM likelihood function to include a term representing the incremental likelihood of track-to-track assignments based solely on feature observations. Computational results are presented to illustrate the success of this approach.</abstract><pub>IEEE</pub><doi>10.1109/AERO.2009.4839481</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1095-323X
ispartof 2009 IEEE Aerospace conference, 2009, p.1-9
issn 1095-323X
2996-2358
language eng
recordid cdi_ieee_primary_4839481
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biographies
Gaussian distribution
Kinematics
Mathematical programming
Measurement errors
Missiles
Pattern matching
Radar tracking
Sensor systems
Target tracking
title Feature-aided global nearest pattern matching with non-Gaussian feature measurement errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature-aided%20global%20nearest%20pattern%20matching%20with%20non-Gaussian%20feature%20measurement%20errors&rft.btitle=2009%20IEEE%20Aerospace%20conference&rft.au=Fercho,%20T.&rft.date=2009-03&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1095-323X&rft.eissn=2996-2358&rft.isbn=1424426219&rft.isbn_list=9781424426218&rft_id=info:doi/10.1109/AERO.2009.4839481&rft_dat=%3Cieee_6IE%3E4839481%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424426227&rft.eisbn_list=9781424426225&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4839481&rfr_iscdi=true