Exploiting Calibration-Induced Artifacts in Lossless Compression of Hyperspectral Imagery

Algorithms for compression of hyperspectral data are commonly evaluated on a readily available collection of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. These images are the end product of processing raw data from the instrument, and their sample value distributions contain artif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2009-08, Vol.47 (8), p.2672-2678
Hauptverfasser: Kiely, A.B., Klimesh, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2678
container_issue 8
container_start_page 2672
container_title IEEE transactions on geoscience and remote sensing
container_volume 47
creator Kiely, A.B.
Klimesh, M.A.
description Algorithms for compression of hyperspectral data are commonly evaluated on a readily available collection of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. These images are the end product of processing raw data from the instrument, and their sample value distributions contain artificial regularities that are introduced by the conversion of raw data values to radiance units. It is shown that some of the best reported lossless compression results for these images are achieved by algorithms that significantly exploit these artifacts. This fact has not been widely reported and may not be widely recognized. Compression performance comparisons involving such algorithms and these standard AVIRIS images can be misleading if they are extrapolated to images that lack such artifacts, such as unprocessed hyperspectral images. In fact, two of these algorithms are shown to achieve rather unremarkable compression performance on a set of more recent AVIRIS images that do not contain appreciable calibration-induced artifacts. This newer set of AVIRIS images, which contains both calibrated and raw images, is made available for compression experiments. To underscore the potential impact of exploiting calibration-induced artifacts in the standard AVIRIS data sets, a compression algorithm is presented that achieves noticeably smaller compressed sizes for these data sets than is reported for any other algorithm.
doi_str_mv 10.1109/TGRS.2009.2015291
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4814516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4814516</ieee_id><sourcerecordid>36362456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-308b8305c32c5c40f20b47cd431161509fd4b8beb445a17a3514e23b209699653</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKs_QLwsguJl60y-mhyl-FEoCFoPnpZsmpXIdndNtmD_vVlaPHjwMjOQZ16YPIScI0wQQd8uH19eJxRAp4KCajwgIxRC5SA5PyQjQC1zqjQ9JicxfgIgFzgdkff7765ufe-bj2xmal8G0_u2yefNamPdKrsLva-M7WPmm2zRxli7GLNZu-5CGhKZtVX2tO1ciJ2zfTB1Nl-bDxe2p-SoMnV0Z_s-Jm8P98vZU754fpzP7ha5ZUr2OQNVKgbCMmqF5VBRKPnUrjhDlChAVyteqtKVnAuDU8MEckdZSUFLraVgY3K9y-1C-7VxsS_WPlpX16Zx7SYWTDJJuZAJvPkXRGDIQLJUx-TyD_rZbkKTzig06ikILgcId5AN6V-Cq4ou-LUJ25RUDFKKQUoxSCn2UtLO1T7YRGvqKpjG-vi7SFExjmo46mLHeefc7zNXgzXJfgB7V5PV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919705461</pqid></control><display><type>article</type><title>Exploiting Calibration-Induced Artifacts in Lossless Compression of Hyperspectral Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Kiely, A.B. ; Klimesh, M.A.</creator><creatorcontrib>Kiely, A.B. ; Klimesh, M.A.</creatorcontrib><description>Algorithms for compression of hyperspectral data are commonly evaluated on a readily available collection of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. These images are the end product of processing raw data from the instrument, and their sample value distributions contain artificial regularities that are introduced by the conversion of raw data values to radiance units. It is shown that some of the best reported lossless compression results for these images are achieved by algorithms that significantly exploit these artifacts. This fact has not been widely reported and may not be widely recognized. Compression performance comparisons involving such algorithms and these standard AVIRIS images can be misleading if they are extrapolated to images that lack such artifacts, such as unprocessed hyperspectral images. In fact, two of these algorithms are shown to achieve rather unremarkable compression performance on a set of more recent AVIRIS images that do not contain appreciable calibration-induced artifacts. This newer set of AVIRIS images, which contains both calibrated and raw images, is made available for compression experiments. To underscore the potential impact of exploiting calibration-induced artifacts in the standard AVIRIS data sets, a compression algorithm is presented that achieves noticeably smaller compressed sizes for these data sets than is reported for any other algorithm.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2009.2015291</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) ; Algorithms ; Applied geophysics ; Calibration ; Compressing ; Compression algorithms ; Data compression ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; hyperspectral imagery ; Hyperspectral imaging ; Image coding ; Image converters ; Infrared imaging ; Infrared spectra ; Instruments ; Internal geophysics ; lossless data compression ; predictive compression ; Raw ; Spectroscopy</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2009-08, Vol.47 (8), p.2672-2678</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-308b8305c32c5c40f20b47cd431161509fd4b8beb445a17a3514e23b209699653</citedby><cites>FETCH-LOGICAL-c386t-308b8305c32c5c40f20b47cd431161509fd4b8beb445a17a3514e23b209699653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4814516$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4814516$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21834185$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiely, A.B.</creatorcontrib><creatorcontrib>Klimesh, M.A.</creatorcontrib><title>Exploiting Calibration-Induced Artifacts in Lossless Compression of Hyperspectral Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Algorithms for compression of hyperspectral data are commonly evaluated on a readily available collection of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. These images are the end product of processing raw data from the instrument, and their sample value distributions contain artificial regularities that are introduced by the conversion of raw data values to radiance units. It is shown that some of the best reported lossless compression results for these images are achieved by algorithms that significantly exploit these artifacts. This fact has not been widely reported and may not be widely recognized. Compression performance comparisons involving such algorithms and these standard AVIRIS images can be misleading if they are extrapolated to images that lack such artifacts, such as unprocessed hyperspectral images. In fact, two of these algorithms are shown to achieve rather unremarkable compression performance on a set of more recent AVIRIS images that do not contain appreciable calibration-induced artifacts. This newer set of AVIRIS images, which contains both calibrated and raw images, is made available for compression experiments. To underscore the potential impact of exploiting calibration-induced artifacts in the standard AVIRIS data sets, a compression algorithm is presented that achieves noticeably smaller compressed sizes for these data sets than is reported for any other algorithm.</description><subject>Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)</subject><subject>Algorithms</subject><subject>Applied geophysics</subject><subject>Calibration</subject><subject>Compressing</subject><subject>Compression algorithms</subject><subject>Data compression</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Image coding</subject><subject>Image converters</subject><subject>Infrared imaging</subject><subject>Infrared spectra</subject><subject>Instruments</subject><subject>Internal geophysics</subject><subject>lossless data compression</subject><subject>predictive compression</subject><subject>Raw</subject><subject>Spectroscopy</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1LAzEQhoMoWKs_QLwsguJl60y-mhyl-FEoCFoPnpZsmpXIdndNtmD_vVlaPHjwMjOQZ16YPIScI0wQQd8uH19eJxRAp4KCajwgIxRC5SA5PyQjQC1zqjQ9JicxfgIgFzgdkff7765ufe-bj2xmal8G0_u2yefNamPdKrsLva-M7WPmm2zRxli7GLNZu-5CGhKZtVX2tO1ciJ2zfTB1Nl-bDxe2p-SoMnV0Z_s-Jm8P98vZU754fpzP7ha5ZUr2OQNVKgbCMmqF5VBRKPnUrjhDlChAVyteqtKVnAuDU8MEckdZSUFLraVgY3K9y-1C-7VxsS_WPlpX16Zx7SYWTDJJuZAJvPkXRGDIQLJUx-TyD_rZbkKTzig06ikILgcId5AN6V-Cq4ou-LUJ25RUDFKKQUoxSCn2UtLO1T7YRGvqKpjG-vi7SFExjmo46mLHeefc7zNXgzXJfgB7V5PV</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Kiely, A.B.</creator><creator>Klimesh, M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20090801</creationdate><title>Exploiting Calibration-Induced Artifacts in Lossless Compression of Hyperspectral Imagery</title><author>Kiely, A.B. ; Klimesh, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-308b8305c32c5c40f20b47cd431161509fd4b8beb445a17a3514e23b209699653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)</topic><topic>Algorithms</topic><topic>Applied geophysics</topic><topic>Calibration</topic><topic>Compressing</topic><topic>Compression algorithms</topic><topic>Data compression</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Image coding</topic><topic>Image converters</topic><topic>Infrared imaging</topic><topic>Infrared spectra</topic><topic>Instruments</topic><topic>Internal geophysics</topic><topic>lossless data compression</topic><topic>predictive compression</topic><topic>Raw</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiely, A.B.</creatorcontrib><creatorcontrib>Klimesh, M.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiely, A.B.</au><au>Klimesh, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Calibration-Induced Artifacts in Lossless Compression of Hyperspectral Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>47</volume><issue>8</issue><spage>2672</spage><epage>2678</epage><pages>2672-2678</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Algorithms for compression of hyperspectral data are commonly evaluated on a readily available collection of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. These images are the end product of processing raw data from the instrument, and their sample value distributions contain artificial regularities that are introduced by the conversion of raw data values to radiance units. It is shown that some of the best reported lossless compression results for these images are achieved by algorithms that significantly exploit these artifacts. This fact has not been widely reported and may not be widely recognized. Compression performance comparisons involving such algorithms and these standard AVIRIS images can be misleading if they are extrapolated to images that lack such artifacts, such as unprocessed hyperspectral images. In fact, two of these algorithms are shown to achieve rather unremarkable compression performance on a set of more recent AVIRIS images that do not contain appreciable calibration-induced artifacts. This newer set of AVIRIS images, which contains both calibrated and raw images, is made available for compression experiments. To underscore the potential impact of exploiting calibration-induced artifacts in the standard AVIRIS data sets, a compression algorithm is presented that achieves noticeably smaller compressed sizes for these data sets than is reported for any other algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2009.2015291</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2009-08, Vol.47 (8), p.2672-2678
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_4814516
source IEEE Electronic Library (IEL)
subjects Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
Algorithms
Applied geophysics
Calibration
Compressing
Compression algorithms
Data compression
Earth sciences
Earth, ocean, space
Exact sciences and technology
hyperspectral imagery
Hyperspectral imaging
Image coding
Image converters
Infrared imaging
Infrared spectra
Instruments
Internal geophysics
lossless data compression
predictive compression
Raw
Spectroscopy
title Exploiting Calibration-Induced Artifacts in Lossless Compression of Hyperspectral Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Calibration-Induced%20Artifacts%20in%20Lossless%20Compression%20of%20Hyperspectral%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Kiely,%20A.B.&rft.date=2009-08-01&rft.volume=47&rft.issue=8&rft.spage=2672&rft.epage=2678&rft.pages=2672-2678&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2009.2015291&rft_dat=%3Cproquest_RIE%3E36362456%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919705461&rft_id=info:pmid/&rft_ieee_id=4814516&rfr_iscdi=true