HMM parameter reduction for practical gesture recognition
We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Rajko, S. Gang Qian |
description | We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in their ability to effectively model gestures, and in some cases superior when training data is limited. We also show that in order to effectively differentiate similar gestures, a gesture recognition model must utilize a large number of states, a scenario which can only be adequately handled by reducer parameter methods to maintain real-time speeds. |
doi_str_mv | 10.1109/AFGR.2008.4813425 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4813425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4813425</ieee_id><sourcerecordid>4813425</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4f02b88fd4c314c9496dc3db30a98a2b4660ec06f29b776ed3e2e03ae13a33b73</originalsourceid><addsrcrecordid>eNpFj1trwkAUhLcUofXyA6Qv-QNJz-45ueyjSNWCUii-y15OZIuasIkP_feNVHBehuEbBkaIuYRMStDvi9X6O1MAVUaVRFL5kxhLUkRK5oTPj4D5SIxvRQ2gQb2IWdf9wCAakKZXoTe7XdKaaM7cc0wi-6vrQ3NJ6iYmbTRDcOaUHLnrr5EH7prjJdwaUzGqzanj2d0nYr_62C836fZr_blcbNOgoU-pBmWrqvbkUJLTpAvv0FsEoyujLBUFsIOiVtqWZcEeWTGgYYkG0ZY4EW__s4GZD20MZxN_D_fb-Ae7NElB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>HMM parameter reduction for practical gesture recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rajko, S. ; Gang Qian</creator><creatorcontrib>Rajko, S. ; Gang Qian</creatorcontrib><description>We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in their ability to effectively model gestures, and in some cases superior when training data is limited. We also show that in order to effectively differentiate similar gestures, a gesture recognition model must utilize a large number of states, a scenario which can only be adequately handled by reducer parameter methods to maintain real-time speeds.</description><identifier>ISBN: 1424421535</identifier><identifier>ISBN: 9781424421534</identifier><identifier>EISBN: 1424421543</identifier><identifier>EISBN: 9781424421541</identifier><identifier>DOI: 10.1109/AFGR.2008.4813425</identifier><identifier>LCCN: 2008900902</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Hidden Markov models ; Inference algorithms ; Libraries ; Pattern recognition ; Probability ; Testing ; Training data ; Usability</subject><ispartof>2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4813425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4813425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajko, S.</creatorcontrib><creatorcontrib>Gang Qian</creatorcontrib><title>HMM parameter reduction for practical gesture recognition</title><title>2008 8th IEEE International Conference on Automatic Face & Gesture Recognition</title><addtitle>AFGR</addtitle><description>We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in their ability to effectively model gestures, and in some cases superior when training data is limited. We also show that in order to effectively differentiate similar gestures, a gesture recognition model must utilize a large number of states, a scenario which can only be adequately handled by reducer parameter methods to maintain real-time speeds.</description><subject>Computational complexity</subject><subject>Hidden Markov models</subject><subject>Inference algorithms</subject><subject>Libraries</subject><subject>Pattern recognition</subject><subject>Probability</subject><subject>Testing</subject><subject>Training data</subject><subject>Usability</subject><isbn>1424421535</isbn><isbn>9781424421534</isbn><isbn>1424421543</isbn><isbn>9781424421541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj1trwkAUhLcUofXyA6Qv-QNJz-45ueyjSNWCUii-y15OZIuasIkP_feNVHBehuEbBkaIuYRMStDvi9X6O1MAVUaVRFL5kxhLUkRK5oTPj4D5SIxvRQ2gQb2IWdf9wCAakKZXoTe7XdKaaM7cc0wi-6vrQ3NJ6iYmbTRDcOaUHLnrr5EH7prjJdwaUzGqzanj2d0nYr_62C836fZr_blcbNOgoU-pBmWrqvbkUJLTpAvv0FsEoyujLBUFsIOiVtqWZcEeWTGgYYkG0ZY4EW__s4GZD20MZxN_D_fb-Ae7NElB</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Rajko, S.</creator><creator>Gang Qian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>HMM parameter reduction for practical gesture recognition</title><author>Rajko, S. ; Gang Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4f02b88fd4c314c9496dc3db30a98a2b4660ec06f29b776ed3e2e03ae13a33b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational complexity</topic><topic>Hidden Markov models</topic><topic>Inference algorithms</topic><topic>Libraries</topic><topic>Pattern recognition</topic><topic>Probability</topic><topic>Testing</topic><topic>Training data</topic><topic>Usability</topic><toplevel>online_resources</toplevel><creatorcontrib>Rajko, S.</creatorcontrib><creatorcontrib>Gang Qian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajko, S.</au><au>Gang Qian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>HMM parameter reduction for practical gesture recognition</atitle><btitle>2008 8th IEEE International Conference on Automatic Face & Gesture Recognition</btitle><stitle>AFGR</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424421535</isbn><isbn>9781424421534</isbn><eisbn>1424421543</eisbn><eisbn>9781424421541</eisbn><abstract>We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in their ability to effectively model gestures, and in some cases superior when training data is limited. We also show that in order to effectively differentiate similar gestures, a gesture recognition model must utilize a large number of states, a scenario which can only be adequately handled by reducer parameter methods to maintain real-time speeds.</abstract><pub>IEEE</pub><doi>10.1109/AFGR.2008.4813425</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424421535 |
ispartof | 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4813425 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational complexity Hidden Markov models Inference algorithms Libraries Pattern recognition Probability Testing Training data Usability |
title | HMM parameter reduction for practical gesture recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=HMM%20parameter%20reduction%20for%20practical%20gesture%20recognition&rft.btitle=2008%208th%20IEEE%20International%20Conference%20on%20Automatic%20Face%20&%20Gesture%20Recognition&rft.au=Rajko,%20S.&rft.date=2008-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424421535&rft.isbn_list=9781424421534&rft_id=info:doi/10.1109/AFGR.2008.4813425&rft_dat=%3Cieee_6IE%3E4813425%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421543&rft.eisbn_list=9781424421541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4813425&rfr_iscdi=true |