HMM parameter reduction for practical gesture recognition

We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rajko, S., Gang Qian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Rajko, S.
Gang Qian
description We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in their ability to effectively model gestures, and in some cases superior when training data is limited. We also show that in order to effectively differentiate similar gestures, a gesture recognition model must utilize a large number of states, a scenario which can only be adequately handled by reducer parameter methods to maintain real-time speeds.
doi_str_mv 10.1109/AFGR.2008.4813425
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4813425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4813425</ieee_id><sourcerecordid>4813425</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4f02b88fd4c314c9496dc3db30a98a2b4660ec06f29b776ed3e2e03ae13a33b73</originalsourceid><addsrcrecordid>eNpFj1trwkAUhLcUofXyA6Qv-QNJz-45ueyjSNWCUii-y15OZIuasIkP_feNVHBehuEbBkaIuYRMStDvi9X6O1MAVUaVRFL5kxhLUkRK5oTPj4D5SIxvRQ2gQb2IWdf9wCAakKZXoTe7XdKaaM7cc0wi-6vrQ3NJ6iYmbTRDcOaUHLnrr5EH7prjJdwaUzGqzanj2d0nYr_62C836fZr_blcbNOgoU-pBmWrqvbkUJLTpAvv0FsEoyujLBUFsIOiVtqWZcEeWTGgYYkG0ZY4EW__s4GZD20MZxN_D_fb-Ae7NElB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>HMM parameter reduction for practical gesture recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rajko, S. ; Gang Qian</creator><creatorcontrib>Rajko, S. ; Gang Qian</creatorcontrib><description>We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in their ability to effectively model gestures, and in some cases superior when training data is limited. We also show that in order to effectively differentiate similar gestures, a gesture recognition model must utilize a large number of states, a scenario which can only be adequately handled by reducer parameter methods to maintain real-time speeds.</description><identifier>ISBN: 1424421535</identifier><identifier>ISBN: 9781424421534</identifier><identifier>EISBN: 1424421543</identifier><identifier>EISBN: 9781424421541</identifier><identifier>DOI: 10.1109/AFGR.2008.4813425</identifier><identifier>LCCN: 2008900902</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational complexity ; Hidden Markov models ; Inference algorithms ; Libraries ; Pattern recognition ; Probability ; Testing ; Training data ; Usability</subject><ispartof>2008 8th IEEE International Conference on Automatic Face &amp; Gesture Recognition, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4813425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4813425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajko, S.</creatorcontrib><creatorcontrib>Gang Qian</creatorcontrib><title>HMM parameter reduction for practical gesture recognition</title><title>2008 8th IEEE International Conference on Automatic Face &amp; Gesture Recognition</title><addtitle>AFGR</addtitle><description>We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in their ability to effectively model gestures, and in some cases superior when training data is limited. We also show that in order to effectively differentiate similar gestures, a gesture recognition model must utilize a large number of states, a scenario which can only be adequately handled by reducer parameter methods to maintain real-time speeds.</description><subject>Computational complexity</subject><subject>Hidden Markov models</subject><subject>Inference algorithms</subject><subject>Libraries</subject><subject>Pattern recognition</subject><subject>Probability</subject><subject>Testing</subject><subject>Training data</subject><subject>Usability</subject><isbn>1424421535</isbn><isbn>9781424421534</isbn><isbn>1424421543</isbn><isbn>9781424421541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj1trwkAUhLcUofXyA6Qv-QNJz-45ueyjSNWCUii-y15OZIuasIkP_feNVHBehuEbBkaIuYRMStDvi9X6O1MAVUaVRFL5kxhLUkRK5oTPj4D5SIxvRQ2gQb2IWdf9wCAakKZXoTe7XdKaaM7cc0wi-6vrQ3NJ6iYmbTRDcOaUHLnrr5EH7prjJdwaUzGqzanj2d0nYr_62C836fZr_blcbNOgoU-pBmWrqvbkUJLTpAvv0FsEoyujLBUFsIOiVtqWZcEeWTGgYYkG0ZY4EW__s4GZD20MZxN_D_fb-Ae7NElB</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Rajko, S.</creator><creator>Gang Qian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>HMM parameter reduction for practical gesture recognition</title><author>Rajko, S. ; Gang Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4f02b88fd4c314c9496dc3db30a98a2b4660ec06f29b776ed3e2e03ae13a33b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational complexity</topic><topic>Hidden Markov models</topic><topic>Inference algorithms</topic><topic>Libraries</topic><topic>Pattern recognition</topic><topic>Probability</topic><topic>Testing</topic><topic>Training data</topic><topic>Usability</topic><toplevel>online_resources</toplevel><creatorcontrib>Rajko, S.</creatorcontrib><creatorcontrib>Gang Qian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajko, S.</au><au>Gang Qian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>HMM parameter reduction for practical gesture recognition</atitle><btitle>2008 8th IEEE International Conference on Automatic Face &amp; Gesture Recognition</btitle><stitle>AFGR</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424421535</isbn><isbn>9781424421534</isbn><eisbn>1424421543</eisbn><eisbn>9781424421541</eisbn><abstract>We examine in detail some properties of gesture recognition models which utilize a reduced number of parameters and lower algorithmic complexity compared to traditional hidden Markov models. We show that the reduced parameter models are comparable to standard HMM-based gesture recognition models in their ability to effectively model gestures, and in some cases superior when training data is limited. We also show that in order to effectively differentiate similar gestures, a gesture recognition model must utilize a large number of states, a scenario which can only be adequately handled by reducer parameter methods to maintain real-time speeds.</abstract><pub>IEEE</pub><doi>10.1109/AFGR.2008.4813425</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424421535
ispartof 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008, p.1-6
issn
language eng
recordid cdi_ieee_primary_4813425
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational complexity
Hidden Markov models
Inference algorithms
Libraries
Pattern recognition
Probability
Testing
Training data
Usability
title HMM parameter reduction for practical gesture recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=HMM%20parameter%20reduction%20for%20practical%20gesture%20recognition&rft.btitle=2008%208th%20IEEE%20International%20Conference%20on%20Automatic%20Face%20&%20Gesture%20Recognition&rft.au=Rajko,%20S.&rft.date=2008-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424421535&rft.isbn_list=9781424421534&rft_id=info:doi/10.1109/AFGR.2008.4813425&rft_dat=%3Cieee_6IE%3E4813425%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421543&rft.eisbn_list=9781424421541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4813425&rfr_iscdi=true