Personalized facial attractiveness prediction

We present a fully automatic approach to learning the personal facial attractiveness preferences of individual users directly from example images. The target application is computer assisted search of partners in online dating services. The proposed approach is based on the use of epsiv-SVMs to lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Whitehill, J., Movellan, J.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Whitehill, J.
Movellan, J.R.
description We present a fully automatic approach to learning the personal facial attractiveness preferences of individual users directly from example images. The target application is computer assisted search of partners in online dating services. The proposed approach is based on the use of epsiv-SVMs to learn a regression function that maps low level image features onto attractiveness ratings. We present empirical results based on a dataset of images collected from a large online dating site. Our system achieved correlations of up to 0.45 (Pearson correlation) on the attractiveness predictions for individual users. We show evidence that the approach learned not just a universal sense of attraction shared by multiple users, but capitalized on the preferences of individual subjects. Our results are promising and could already be used to facilitate the personalized search of partners in online dating.
doi_str_mv 10.1109/AFGR.2008.4813332
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4813332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4813332</ieee_id><sourcerecordid>4813332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2472-21484ac46a4759243dba89fcce9b01eb1cdbcb09b88de348146c6ca77f446acd3</originalsourceid><addsrcrecordid>eNpFT9tKw0AUXJGCtvYDxJf8QOJeTpLdx1JsKxQU0edy9uwJrMS07AZBv96IBedlGOYCI8StkpVS0t2vNtuXSktpK7DKGKMvxFyBBtCqBnP5L0w9E_PfoJPSSX0lljm_ywkwWQ6uRfnMKR8H7OM3h6JDitgXOI4JaYyfPHDOxSlxiJM8Djdi1mGfeXnmhXjbPLyud-X-afu4Xu1L0tDqUiuwgAQNQls7DSZ4tK4jYuelYq8oePLSeWsDm-kCNNQQtm0HU4eCWYi7v93IzIdTih-Yvg7nr-YHVIBFvQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Personalized facial attractiveness prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Whitehill, J. ; Movellan, J.R.</creator><creatorcontrib>Whitehill, J. ; Movellan, J.R.</creatorcontrib><description>We present a fully automatic approach to learning the personal facial attractiveness preferences of individual users directly from example images. The target application is computer assisted search of partners in online dating services. The proposed approach is based on the use of epsiv-SVMs to learn a regression function that maps low level image features onto attractiveness ratings. We present empirical results based on a dataset of images collected from a large online dating site. Our system achieved correlations of up to 0.45 (Pearson correlation) on the attractiveness predictions for individual users. We show evidence that the approach learned not just a universal sense of attraction shared by multiple users, but capitalized on the preferences of individual subjects. Our results are promising and could already be used to facilitate the personalized search of partners in online dating.</description><identifier>ISBN: 1424421535</identifier><identifier>ISBN: 9781424421534</identifier><identifier>EISBN: 1424421543</identifier><identifier>EISBN: 9781424421541</identifier><identifier>DOI: 10.1109/AFGR.2008.4813332</identifier><identifier>LCCN: 2008900902</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer vision ; Face detection ; Facial features ; Image databases ; Image representation ; Kernel ; Linear regression ; Machine learning ; Principal component analysis</subject><ispartof>2008 8th IEEE International Conference on Automatic Face &amp; Gesture Recognition, 2008, p.1-7</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2472-21484ac46a4759243dba89fcce9b01eb1cdbcb09b88de348146c6ca77f446acd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4813332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4813332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Whitehill, J.</creatorcontrib><creatorcontrib>Movellan, J.R.</creatorcontrib><title>Personalized facial attractiveness prediction</title><title>2008 8th IEEE International Conference on Automatic Face &amp; Gesture Recognition</title><addtitle>AFGR</addtitle><description>We present a fully automatic approach to learning the personal facial attractiveness preferences of individual users directly from example images. The target application is computer assisted search of partners in online dating services. The proposed approach is based on the use of epsiv-SVMs to learn a regression function that maps low level image features onto attractiveness ratings. We present empirical results based on a dataset of images collected from a large online dating site. Our system achieved correlations of up to 0.45 (Pearson correlation) on the attractiveness predictions for individual users. We show evidence that the approach learned not just a universal sense of attraction shared by multiple users, but capitalized on the preferences of individual subjects. Our results are promising and could already be used to facilitate the personalized search of partners in online dating.</description><subject>Application software</subject><subject>Computer vision</subject><subject>Face detection</subject><subject>Facial features</subject><subject>Image databases</subject><subject>Image representation</subject><subject>Kernel</subject><subject>Linear regression</subject><subject>Machine learning</subject><subject>Principal component analysis</subject><isbn>1424421535</isbn><isbn>9781424421534</isbn><isbn>1424421543</isbn><isbn>9781424421541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT9tKw0AUXJGCtvYDxJf8QOJeTpLdx1JsKxQU0edy9uwJrMS07AZBv96IBedlGOYCI8StkpVS0t2vNtuXSktpK7DKGKMvxFyBBtCqBnP5L0w9E_PfoJPSSX0lljm_ywkwWQ6uRfnMKR8H7OM3h6JDitgXOI4JaYyfPHDOxSlxiJM8Djdi1mGfeXnmhXjbPLyud-X-afu4Xu1L0tDqUiuwgAQNQls7DSZ4tK4jYuelYq8oePLSeWsDm-kCNNQQtm0HU4eCWYi7v93IzIdTih-Yvg7nr-YHVIBFvQ</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Whitehill, J.</creator><creator>Movellan, J.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Personalized facial attractiveness prediction</title><author>Whitehill, J. ; Movellan, J.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2472-21484ac46a4759243dba89fcce9b01eb1cdbcb09b88de348146c6ca77f446acd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Computer vision</topic><topic>Face detection</topic><topic>Facial features</topic><topic>Image databases</topic><topic>Image representation</topic><topic>Kernel</topic><topic>Linear regression</topic><topic>Machine learning</topic><topic>Principal component analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Whitehill, J.</creatorcontrib><creatorcontrib>Movellan, J.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Whitehill, J.</au><au>Movellan, J.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Personalized facial attractiveness prediction</atitle><btitle>2008 8th IEEE International Conference on Automatic Face &amp; Gesture Recognition</btitle><stitle>AFGR</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>1424421535</isbn><isbn>9781424421534</isbn><eisbn>1424421543</eisbn><eisbn>9781424421541</eisbn><abstract>We present a fully automatic approach to learning the personal facial attractiveness preferences of individual users directly from example images. The target application is computer assisted search of partners in online dating services. The proposed approach is based on the use of epsiv-SVMs to learn a regression function that maps low level image features onto attractiveness ratings. We present empirical results based on a dataset of images collected from a large online dating site. Our system achieved correlations of up to 0.45 (Pearson correlation) on the attractiveness predictions for individual users. We show evidence that the approach learned not just a universal sense of attraction shared by multiple users, but capitalized on the preferences of individual subjects. Our results are promising and could already be used to facilitate the personalized search of partners in online dating.</abstract><pub>IEEE</pub><doi>10.1109/AFGR.2008.4813332</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424421535
ispartof 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008, p.1-7
issn
language eng
recordid cdi_ieee_primary_4813332
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer vision
Face detection
Facial features
Image databases
Image representation
Kernel
Linear regression
Machine learning
Principal component analysis
title Personalized facial attractiveness prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Personalized%20facial%20attractiveness%20prediction&rft.btitle=2008%208th%20IEEE%20International%20Conference%20on%20Automatic%20Face%20&%20Gesture%20Recognition&rft.au=Whitehill,%20J.&rft.date=2008-09&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=1424421535&rft.isbn_list=9781424421534&rft_id=info:doi/10.1109/AFGR.2008.4813332&rft_dat=%3Cieee_6IE%3E4813332%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421543&rft.eisbn_list=9781424421541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4813332&rfr_iscdi=true