Humans versus algorithms: Comparisons from the Face Recognition Vendor Test 2006
We present a synopsis of results comparing the performance of humans with face recognition algorithms tested in the face recognition vendor test (FRVT) 2006 and face recognition grand challenge (FRGC). Algorithms and humans matched face identity in images taken under controlled and uncontrolled illu...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | O'Toole, A.J. Phillips, P.J. Narvekar, A. |
description | We present a synopsis of results comparing the performance of humans with face recognition algorithms tested in the face recognition vendor test (FRVT) 2006 and face recognition grand challenge (FRGC). Algorithms and humans matched face identity in images taken under controlled and uncontrolled illumination. The human-machine comparisons include accuracy benchmarks, an error pattern analysis, and a test of human and machine performance stability across data sets varying in image quality. The results indicate that: (1.) machines can compete quantitatively with humans matching face identity across changes in illumination; (2.) qualitative differences between humans and machines can be exploited to improve identification by fusing human and machine match scores; and (3.) recognition skills for humans and machines are comparably stable across changes in image quality. Combined the results suggest that face recognition algorithms may be ready for applications with task constraints similar to those evaluated in the FRVT 2006. |
doi_str_mv | 10.1109/AFGR.2008.4813318 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4813318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4813318</ieee_id><sourcerecordid>4813318</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-86200d5eeb7aadbf0bde126d3069d5ef00865baa2130cdf41695764101e0d7013</originalsourceid><addsrcrecordid>eNpFUNFqAjEQTClCq_UDSl_yA9rdSy5e-ibS04LQItJXyV32NMW7SHIW-veNVOi-LDszzA7D2CPCFBH087xcbqYZQDGVBQqBxQ0bosykzDCX4vb_EPmADS9CDaAhu2PjGL8gjUyUlvfsY3VuTRf5N4V4jtwc9z64_tDGF77w7ckEF32im-Bb3h-Il6YmvqHa7zvXO9_xT-qsD3xLsefpkXpgg8YcI42ve8S25et2sZqs35dvi_l64jT0k0Ilrc2JqpkxtmqgsoSZsgKUTnCTEqu8MiZDAbVtJCqdz5REQAI7AxQj9vRn64hodwquNeFnd21D_AJbZ1BW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Humans versus algorithms: Comparisons from the Face Recognition Vendor Test 2006</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>O'Toole, A.J. ; Phillips, P.J. ; Narvekar, A.</creator><creatorcontrib>O'Toole, A.J. ; Phillips, P.J. ; Narvekar, A.</creatorcontrib><description>We present a synopsis of results comparing the performance of humans with face recognition algorithms tested in the face recognition vendor test (FRVT) 2006 and face recognition grand challenge (FRGC). Algorithms and humans matched face identity in images taken under controlled and uncontrolled illumination. The human-machine comparisons include accuracy benchmarks, an error pattern analysis, and a test of human and machine performance stability across data sets varying in image quality. The results indicate that: (1.) machines can compete quantitatively with humans matching face identity across changes in illumination; (2.) qualitative differences between humans and machines can be exploited to improve identification by fusing human and machine match scores; and (3.) recognition skills for humans and machines are comparably stable across changes in image quality. Combined the results suggest that face recognition algorithms may be ready for applications with task constraints similar to those evaluated in the FRVT 2006.</description><identifier>ISBN: 1424421535</identifier><identifier>ISBN: 9781424421534</identifier><identifier>EISBN: 1424421543</identifier><identifier>EISBN: 9781424421541</identifier><identifier>DOI: 10.1109/AFGR.2008.4813318</identifier><identifier>LCCN: 2008900902</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Electromyography ; Emotion recognition ; Face detection ; Face recognition ; Facial muscles ; Humans ; Laboratories ; Psychology ; Testing</subject><ispartof>2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4813318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4813318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>O'Toole, A.J.</creatorcontrib><creatorcontrib>Phillips, P.J.</creatorcontrib><creatorcontrib>Narvekar, A.</creatorcontrib><title>Humans versus algorithms: Comparisons from the Face Recognition Vendor Test 2006</title><title>2008 8th IEEE International Conference on Automatic Face & Gesture Recognition</title><addtitle>AFGR</addtitle><description>We present a synopsis of results comparing the performance of humans with face recognition algorithms tested in the face recognition vendor test (FRVT) 2006 and face recognition grand challenge (FRGC). Algorithms and humans matched face identity in images taken under controlled and uncontrolled illumination. The human-machine comparisons include accuracy benchmarks, an error pattern analysis, and a test of human and machine performance stability across data sets varying in image quality. The results indicate that: (1.) machines can compete quantitatively with humans matching face identity across changes in illumination; (2.) qualitative differences between humans and machines can be exploited to improve identification by fusing human and machine match scores; and (3.) recognition skills for humans and machines are comparably stable across changes in image quality. Combined the results suggest that face recognition algorithms may be ready for applications with task constraints similar to those evaluated in the FRVT 2006.</description><subject>Biomedical imaging</subject><subject>Electromyography</subject><subject>Emotion recognition</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Facial muscles</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Psychology</subject><subject>Testing</subject><isbn>1424421535</isbn><isbn>9781424421534</isbn><isbn>1424421543</isbn><isbn>9781424421541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUNFqAjEQTClCq_UDSl_yA9rdSy5e-ibS04LQItJXyV32NMW7SHIW-veNVOi-LDszzA7D2CPCFBH087xcbqYZQDGVBQqBxQ0bosykzDCX4vb_EPmADS9CDaAhu2PjGL8gjUyUlvfsY3VuTRf5N4V4jtwc9z64_tDGF77w7ckEF32im-Bb3h-Il6YmvqHa7zvXO9_xT-qsD3xLsefpkXpgg8YcI42ve8S25et2sZqs35dvi_l64jT0k0Ilrc2JqpkxtmqgsoSZsgKUTnCTEqu8MiZDAbVtJCqdz5REQAI7AxQj9vRn64hodwquNeFnd21D_AJbZ1BW</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>O'Toole, A.J.</creator><creator>Phillips, P.J.</creator><creator>Narvekar, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200809</creationdate><title>Humans versus algorithms: Comparisons from the Face Recognition Vendor Test 2006</title><author>O'Toole, A.J. ; Phillips, P.J. ; Narvekar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-86200d5eeb7aadbf0bde126d3069d5ef00865baa2130cdf41695764101e0d7013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biomedical imaging</topic><topic>Electromyography</topic><topic>Emotion recognition</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Facial muscles</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Psychology</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>O'Toole, A.J.</creatorcontrib><creatorcontrib>Phillips, P.J.</creatorcontrib><creatorcontrib>Narvekar, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>O'Toole, A.J.</au><au>Phillips, P.J.</au><au>Narvekar, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Humans versus algorithms: Comparisons from the Face Recognition Vendor Test 2006</atitle><btitle>2008 8th IEEE International Conference on Automatic Face & Gesture Recognition</btitle><stitle>AFGR</stitle><date>2008-09</date><risdate>2008</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424421535</isbn><isbn>9781424421534</isbn><eisbn>1424421543</eisbn><eisbn>9781424421541</eisbn><abstract>We present a synopsis of results comparing the performance of humans with face recognition algorithms tested in the face recognition vendor test (FRVT) 2006 and face recognition grand challenge (FRGC). Algorithms and humans matched face identity in images taken under controlled and uncontrolled illumination. The human-machine comparisons include accuracy benchmarks, an error pattern analysis, and a test of human and machine performance stability across data sets varying in image quality. The results indicate that: (1.) machines can compete quantitatively with humans matching face identity across changes in illumination; (2.) qualitative differences between humans and machines can be exploited to improve identification by fusing human and machine match scores; and (3.) recognition skills for humans and machines are comparably stable across changes in image quality. Combined the results suggest that face recognition algorithms may be ready for applications with task constraints similar to those evaluated in the FRVT 2006.</abstract><pub>IEEE</pub><doi>10.1109/AFGR.2008.4813318</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424421535 |
ispartof | 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4813318 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging Electromyography Emotion recognition Face detection Face recognition Facial muscles Humans Laboratories Psychology Testing |
title | Humans versus algorithms: Comparisons from the Face Recognition Vendor Test 2006 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Humans%20versus%20algorithms:%20Comparisons%20from%20the%20Face%20Recognition%20Vendor%20Test%202006&rft.btitle=2008%208th%20IEEE%20International%20Conference%20on%20Automatic%20Face%20&%20Gesture%20Recognition&rft.au=O'Toole,%20A.J.&rft.date=2008-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424421535&rft.isbn_list=9781424421534&rft_id=info:doi/10.1109/AFGR.2008.4813318&rft_dat=%3Cieee_6IE%3E4813318%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424421543&rft.eisbn_list=9781424421541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4813318&rfr_iscdi=true |