Visual System Based on Artificial Retina for Motion Detection

We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2009-06, Vol.39 (3), p.752-762
Hauptverfasser: Barranco, F., Diaz, J., Ros, E., del Pino, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 3
container_start_page 752
container_title IEEE transactions on cybernetics
container_volume 39
creator Barranco, F.
Diaz, J.
Ros, E.
del Pino, B.
description We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.
doi_str_mv 10.1109/TSMCB.2008.2009067
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4812007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4812007</ieee_id><sourcerecordid>869856067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e879bf777bfcf45fee61653edcf3e8900d206d3ea432e954b0890182c25037893</originalsourceid><addsrcrecordid>eNp9kUlLA0EQhRtRTIz-AQUZPOhpYm_Ty8FDEldIEEz02sxSDR2STJyeOeTf22MGBQ9eqop-Xz3oegidEzwkBOvbxXw2GQ8pxqotGgt5gPpEcxJjrulhmLFiMedE99CJ90vcQloeox7RTFClRR_dfTjfpKtovvM1rKNx6qGIyk00qmpnXe6C9Aa126SRLatoVtYuiPdQQ95Op-jIpisPZ10foPfHh8XkOZ6-Pr1MRtM4ZwrXMSipMyulzGxueWIBBBEJgyK3DJTGuKBYFAxSzijohGc4PBJFc5pgJpVmA3Sz991W5WcDvjZr53NYrdINlI03SmiViHCAQF7_SwpJiBaaBfDqD7gsm2oTfmFUIjnjSUIDRPdQXpXeV2DNtnLrtNoZgk2bgfnOwLQZmC6DsHTZOTfZGorfle7oAbjYAw4AfmSuSHCQ7AtKNoh_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857434552</pqid></control><display><type>article</type><title>Visual System Based on Artificial Retina for Motion Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Barranco, F. ; Diaz, J. ; Ros, E. ; del Pino, B.</creator><creatorcontrib>Barranco, F. ; Diaz, J. ; Ros, E. ; del Pino, B.</creatorcontrib><description>We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2008.2009067</identifier><identifier>PMID: 19362896</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial retina ; bioinspired vision ; Biological system modeling ; Biology computing ; block matching ; Computer architecture ; Cost function ; Cybernetics - methods ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Models, Neurological ; Motion ; Motion detection ; Motion estimation ; motion processing ; multiscale motion estimation ; rank-order coding ; Retina ; Retina - physiology ; retinomorphic chip ; Spatiotemporal phenomena ; Stability ; Time Factors ; Visual system</subject><ispartof>IEEE transactions on cybernetics, 2009-06, Vol.39 (3), p.752-762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e879bf777bfcf45fee61653edcf3e8900d206d3ea432e954b0890182c25037893</citedby><cites>FETCH-LOGICAL-c380t-e879bf777bfcf45fee61653edcf3e8900d206d3ea432e954b0890182c25037893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4812007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4812007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19362896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barranco, F.</creatorcontrib><creatorcontrib>Diaz, J.</creatorcontrib><creatorcontrib>Ros, E.</creatorcontrib><creatorcontrib>del Pino, B.</creatorcontrib><title>Visual System Based on Artificial Retina for Motion Detection</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial retina</subject><subject>bioinspired vision</subject><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>block matching</subject><subject>Computer architecture</subject><subject>Cost function</subject><subject>Cybernetics - methods</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Models, Neurological</subject><subject>Motion</subject><subject>Motion detection</subject><subject>Motion estimation</subject><subject>motion processing</subject><subject>multiscale motion estimation</subject><subject>rank-order coding</subject><subject>Retina</subject><subject>Retina - physiology</subject><subject>retinomorphic chip</subject><subject>Spatiotemporal phenomena</subject><subject>Stability</subject><subject>Time Factors</subject><subject>Visual system</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlLA0EQhRtRTIz-AQUZPOhpYm_Ty8FDEldIEEz02sxSDR2STJyeOeTf22MGBQ9eqop-Xz3oegidEzwkBOvbxXw2GQ8pxqotGgt5gPpEcxJjrulhmLFiMedE99CJ90vcQloeox7RTFClRR_dfTjfpKtovvM1rKNx6qGIyk00qmpnXe6C9Aa126SRLatoVtYuiPdQQ95Op-jIpisPZ10foPfHh8XkOZ6-Pr1MRtM4ZwrXMSipMyulzGxueWIBBBEJgyK3DJTGuKBYFAxSzijohGc4PBJFc5pgJpVmA3Sz991W5WcDvjZr53NYrdINlI03SmiViHCAQF7_SwpJiBaaBfDqD7gsm2oTfmFUIjnjSUIDRPdQXpXeV2DNtnLrtNoZgk2bgfnOwLQZmC6DsHTZOTfZGorfle7oAbjYAw4AfmSuSHCQ7AtKNoh_</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Barranco, F.</creator><creator>Diaz, J.</creator><creator>Ros, E.</creator><creator>del Pino, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20090601</creationdate><title>Visual System Based on Artificial Retina for Motion Detection</title><author>Barranco, F. ; Diaz, J. ; Ros, E. ; del Pino, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e879bf777bfcf45fee61653edcf3e8900d206d3ea432e954b0890182c25037893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial retina</topic><topic>bioinspired vision</topic><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>block matching</topic><topic>Computer architecture</topic><topic>Cost function</topic><topic>Cybernetics - methods</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Models, Neurological</topic><topic>Motion</topic><topic>Motion detection</topic><topic>Motion estimation</topic><topic>motion processing</topic><topic>multiscale motion estimation</topic><topic>rank-order coding</topic><topic>Retina</topic><topic>Retina - physiology</topic><topic>retinomorphic chip</topic><topic>Spatiotemporal phenomena</topic><topic>Stability</topic><topic>Time Factors</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barranco, F.</creatorcontrib><creatorcontrib>Diaz, J.</creatorcontrib><creatorcontrib>Ros, E.</creatorcontrib><creatorcontrib>del Pino, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barranco, F.</au><au>Diaz, J.</au><au>Ros, E.</au><au>del Pino, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual System Based on Artificial Retina for Motion Detection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>39</volume><issue>3</issue><spage>752</spage><epage>762</epage><pages>752-762</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19362896</pmid><doi>10.1109/TSMCB.2008.2009067</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2009-06, Vol.39 (3), p.752-762
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_ieee_primary_4812007
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial Intelligence
Artificial retina
bioinspired vision
Biological system modeling
Biology computing
block matching
Computer architecture
Cost function
Cybernetics - methods
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Models, Neurological
Motion
Motion detection
Motion estimation
motion processing
multiscale motion estimation
rank-order coding
Retina
Retina - physiology
retinomorphic chip
Spatiotemporal phenomena
Stability
Time Factors
Visual system
title Visual System Based on Artificial Retina for Motion Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20System%20Based%20on%20Artificial%20Retina%20for%20Motion%20Detection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Barranco,%20F.&rft.date=2009-06-01&rft.volume=39&rft.issue=3&rft.spage=752&rft.epage=762&rft.pages=752-762&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2008.2009067&rft_dat=%3Cproquest_RIE%3E869856067%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857434552&rft_id=info:pmid/19362896&rft_ieee_id=4812007&rfr_iscdi=true