Visual System Based on Artificial Retina for Motion Detection
We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2009-06, Vol.39 (3), p.752-762 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 3 |
container_start_page | 752 |
container_title | IEEE transactions on cybernetics |
container_volume | 39 |
creator | Barranco, F. Diaz, J. Ros, E. del Pino, B. |
description | We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures. |
doi_str_mv | 10.1109/TSMCB.2008.2009067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4812007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4812007</ieee_id><sourcerecordid>869856067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e879bf777bfcf45fee61653edcf3e8900d206d3ea432e954b0890182c25037893</originalsourceid><addsrcrecordid>eNp9kUlLA0EQhRtRTIz-AQUZPOhpYm_Ty8FDEldIEEz02sxSDR2STJyeOeTf22MGBQ9eqop-Xz3oegidEzwkBOvbxXw2GQ8pxqotGgt5gPpEcxJjrulhmLFiMedE99CJ90vcQloeox7RTFClRR_dfTjfpKtovvM1rKNx6qGIyk00qmpnXe6C9Aa126SRLatoVtYuiPdQQ95Op-jIpisPZ10foPfHh8XkOZ6-Pr1MRtM4ZwrXMSipMyulzGxueWIBBBEJgyK3DJTGuKBYFAxSzijohGc4PBJFc5pgJpVmA3Sz991W5WcDvjZr53NYrdINlI03SmiViHCAQF7_SwpJiBaaBfDqD7gsm2oTfmFUIjnjSUIDRPdQXpXeV2DNtnLrtNoZgk2bgfnOwLQZmC6DsHTZOTfZGorfle7oAbjYAw4AfmSuSHCQ7AtKNoh_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857434552</pqid></control><display><type>article</type><title>Visual System Based on Artificial Retina for Motion Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Barranco, F. ; Diaz, J. ; Ros, E. ; del Pino, B.</creator><creatorcontrib>Barranco, F. ; Diaz, J. ; Ros, E. ; del Pino, B.</creatorcontrib><description>We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2008.2009067</identifier><identifier>PMID: 19362896</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial retina ; bioinspired vision ; Biological system modeling ; Biology computing ; block matching ; Computer architecture ; Cost function ; Cybernetics - methods ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Models, Neurological ; Motion ; Motion detection ; Motion estimation ; motion processing ; multiscale motion estimation ; rank-order coding ; Retina ; Retina - physiology ; retinomorphic chip ; Spatiotemporal phenomena ; Stability ; Time Factors ; Visual system</subject><ispartof>IEEE transactions on cybernetics, 2009-06, Vol.39 (3), p.752-762</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e879bf777bfcf45fee61653edcf3e8900d206d3ea432e954b0890182c25037893</citedby><cites>FETCH-LOGICAL-c380t-e879bf777bfcf45fee61653edcf3e8900d206d3ea432e954b0890182c25037893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4812007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4812007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19362896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barranco, F.</creatorcontrib><creatorcontrib>Diaz, J.</creatorcontrib><creatorcontrib>Ros, E.</creatorcontrib><creatorcontrib>del Pino, B.</creatorcontrib><title>Visual System Based on Artificial Retina for Motion Detection</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial retina</subject><subject>bioinspired vision</subject><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>block matching</subject><subject>Computer architecture</subject><subject>Cost function</subject><subject>Cybernetics - methods</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Models, Neurological</subject><subject>Motion</subject><subject>Motion detection</subject><subject>Motion estimation</subject><subject>motion processing</subject><subject>multiscale motion estimation</subject><subject>rank-order coding</subject><subject>Retina</subject><subject>Retina - physiology</subject><subject>retinomorphic chip</subject><subject>Spatiotemporal phenomena</subject><subject>Stability</subject><subject>Time Factors</subject><subject>Visual system</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlLA0EQhRtRTIz-AQUZPOhpYm_Ty8FDEldIEEz02sxSDR2STJyeOeTf22MGBQ9eqop-Xz3oegidEzwkBOvbxXw2GQ8pxqotGgt5gPpEcxJjrulhmLFiMedE99CJ90vcQloeox7RTFClRR_dfTjfpKtovvM1rKNx6qGIyk00qmpnXe6C9Aa126SRLatoVtYuiPdQQ95Op-jIpisPZ10foPfHh8XkOZ6-Pr1MRtM4ZwrXMSipMyulzGxueWIBBBEJgyK3DJTGuKBYFAxSzijohGc4PBJFc5pgJpVmA3Sz991W5WcDvjZr53NYrdINlI03SmiViHCAQF7_SwpJiBaaBfDqD7gsm2oTfmFUIjnjSUIDRPdQXpXeV2DNtnLrtNoZgk2bgfnOwLQZmC6DsHTZOTfZGorfle7oAbjYAw4AfmSuSHCQ7AtKNoh_</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Barranco, F.</creator><creator>Diaz, J.</creator><creator>Ros, E.</creator><creator>del Pino, B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20090601</creationdate><title>Visual System Based on Artificial Retina for Motion Detection</title><author>Barranco, F. ; Diaz, J. ; Ros, E. ; del Pino, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e879bf777bfcf45fee61653edcf3e8900d206d3ea432e954b0890182c25037893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial retina</topic><topic>bioinspired vision</topic><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>block matching</topic><topic>Computer architecture</topic><topic>Cost function</topic><topic>Cybernetics - methods</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Models, Neurological</topic><topic>Motion</topic><topic>Motion detection</topic><topic>Motion estimation</topic><topic>motion processing</topic><topic>multiscale motion estimation</topic><topic>rank-order coding</topic><topic>Retina</topic><topic>Retina - physiology</topic><topic>retinomorphic chip</topic><topic>Spatiotemporal phenomena</topic><topic>Stability</topic><topic>Time Factors</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barranco, F.</creatorcontrib><creatorcontrib>Diaz, J.</creatorcontrib><creatorcontrib>Ros, E.</creatorcontrib><creatorcontrib>del Pino, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barranco, F.</au><au>Diaz, J.</au><au>Ros, E.</au><au>del Pino, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual System Based on Artificial Retina for Motion Detection</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>39</volume><issue>3</issue><spage>752</spage><epage>762</epage><pages>752-762</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19362896</pmid><doi>10.1109/TSMCB.2008.2009067</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2009-06, Vol.39 (3), p.752-762 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_4812007 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial Intelligence Artificial retina bioinspired vision Biological system modeling Biology computing block matching Computer architecture Cost function Cybernetics - methods Image Enhancement - methods Image Processing, Computer-Assisted - methods Models, Neurological Motion Motion detection Motion estimation motion processing multiscale motion estimation rank-order coding Retina Retina - physiology retinomorphic chip Spatiotemporal phenomena Stability Time Factors Visual system |
title | Visual System Based on Artificial Retina for Motion Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20System%20Based%20on%20Artificial%20Retina%20for%20Motion%20Detection&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Barranco,%20F.&rft.date=2009-06-01&rft.volume=39&rft.issue=3&rft.spage=752&rft.epage=762&rft.pages=752-762&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2008.2009067&rft_dat=%3Cproquest_RIE%3E869856067%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857434552&rft_id=info:pmid/19362896&rft_ieee_id=4812007&rfr_iscdi=true |