Proportionate feature selection - A pre-processing step for clustering
Accuracy and efficiency of clustering algorithms depend greatly on the input data. Thus, removing unimportant features from the dataset can help us form better clusters in lesser time. These unimportant features may be those that are redundant, or affected by noise, etc. We also need to consider the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!