Style of action based individual recognition in video sequences

We present a method for recognizing individuals from their ldquostyle of actionrdquo. Two forms of human recognition can be useful: the determination that an object is from the class of humans (which is called human detection), and the determination that an object is a particular individual from thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pratheepan, Y., Prasad, G., Condell, J.V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1242
container_issue
container_start_page 1237
container_title
container_volume
creator Pratheepan, Y.
Prasad, G.
Condell, J.V.
description We present a method for recognizing individuals from their ldquostyle of actionrdquo. Two forms of human recognition can be useful: the determination that an object is from the class of humans (which is called human detection), and the determination that an object is a particular individual from this class (this is called individual recognition). This paper focuses on the latter problem. A periodicity is detected in from a sequence of motion detected binary image frames by finding the maximum similarity measure between them. Based on the periodicity information the Motion History Image (MHI) is applied for each individual sequence to find out entire motion information of periodic action. The individual is then recognized using a partial Hausdorff Distance similarity measure and the SVM classification approach.
doi_str_mv 10.1109/ICSMC.2008.4811452
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4811452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4811452</ieee_id><sourcerecordid>4811452</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cf52e2fb3fc47dc8cda49b22921e87cf1d37505d19587f83ce7d19fa0d1b9d913</originalsourceid><addsrcrecordid>eNpFkM1KAzEUheNPwU71BXSTF5iae5M0yUpkqFqouGgX3ZVMciOROqOdVujbO2rB1TmcD77FYewaxBhAuNtZtXiuxiiEHSsLoDSesAIUKoXSKnvKhqiNKWGi9dk_kKtzNgQxwdIhrgas-BE4IXvjBSu67k0IFArskN0tdocN8TZxH3a5bXjtO4o8NzF_5bj3G76l0L42-Rfmhvcrtbyjzz01gbpLNkh-09HVMUds-TBdVk_l_OVxVt3Py-zErgxJI2GqZQrKxGBD9MrViA6BrAkJojRa6AhOW5OsDGT6nryIULvoQI7YzZ82E9H6Y5vf_fawPj4ivwE5X0-V</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Style of action based individual recognition in video sequences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pratheepan, Y. ; Prasad, G. ; Condell, J.V.</creator><creatorcontrib>Pratheepan, Y. ; Prasad, G. ; Condell, J.V.</creatorcontrib><description>We present a method for recognizing individuals from their ldquostyle of actionrdquo. Two forms of human recognition can be useful: the determination that an object is from the class of humans (which is called human detection), and the determination that an object is a particular individual from this class (this is called individual recognition). This paper focuses on the latter problem. A periodicity is detected in from a sequence of motion detected binary image frames by finding the maximum similarity measure between them. Based on the periodicity information the Motion History Image (MHI) is applied for each individual sequence to find out entire motion information of periodic action. The individual is then recognized using a partial Hausdorff Distance similarity measure and the SVM classification approach.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 142442383X</identifier><identifier>ISBN: 9781424423835</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1424423848</identifier><identifier>EISBN: 9781424423842</identifier><identifier>DOI: 10.1109/ICSMC.2008.4811452</identifier><identifier>LCCN: 2008903109</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fingers ; Humans ; Intelligent robots ; Intelligent systems ; Iris ; Motion detection ; Security ; Support vector machine classification ; Support vector machines ; Video sequences</subject><ispartof>2008 IEEE International Conference on Systems, Man and Cybernetics, 2008, p.1237-1242</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4811452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4811452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pratheepan, Y.</creatorcontrib><creatorcontrib>Prasad, G.</creatorcontrib><creatorcontrib>Condell, J.V.</creatorcontrib><title>Style of action based individual recognition in video sequences</title><title>2008 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>We present a method for recognizing individuals from their ldquostyle of actionrdquo. Two forms of human recognition can be useful: the determination that an object is from the class of humans (which is called human detection), and the determination that an object is a particular individual from this class (this is called individual recognition). This paper focuses on the latter problem. A periodicity is detected in from a sequence of motion detected binary image frames by finding the maximum similarity measure between them. Based on the periodicity information the Motion History Image (MHI) is applied for each individual sequence to find out entire motion information of periodic action. The individual is then recognized using a partial Hausdorff Distance similarity measure and the SVM classification approach.</description><subject>Fingers</subject><subject>Humans</subject><subject>Intelligent robots</subject><subject>Intelligent systems</subject><subject>Iris</subject><subject>Motion detection</subject><subject>Security</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Video sequences</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>142442383X</isbn><isbn>9781424423835</isbn><isbn>1424423848</isbn><isbn>9781424423842</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1KAzEUheNPwU71BXSTF5iae5M0yUpkqFqouGgX3ZVMciOROqOdVujbO2rB1TmcD77FYewaxBhAuNtZtXiuxiiEHSsLoDSesAIUKoXSKnvKhqiNKWGi9dk_kKtzNgQxwdIhrgas-BE4IXvjBSu67k0IFArskN0tdocN8TZxH3a5bXjtO4o8NzF_5bj3G76l0L42-Rfmhvcrtbyjzz01gbpLNkh-09HVMUds-TBdVk_l_OVxVt3Py-zErgxJI2GqZQrKxGBD9MrViA6BrAkJojRa6AhOW5OsDGT6nryIULvoQI7YzZ82E9H6Y5vf_fawPj4ivwE5X0-V</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Pratheepan, Y.</creator><creator>Prasad, G.</creator><creator>Condell, J.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200810</creationdate><title>Style of action based individual recognition in video sequences</title><author>Pratheepan, Y. ; Prasad, G. ; Condell, J.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cf52e2fb3fc47dc8cda49b22921e87cf1d37505d19587f83ce7d19fa0d1b9d913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Fingers</topic><topic>Humans</topic><topic>Intelligent robots</topic><topic>Intelligent systems</topic><topic>Iris</topic><topic>Motion detection</topic><topic>Security</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Pratheepan, Y.</creatorcontrib><creatorcontrib>Prasad, G.</creatorcontrib><creatorcontrib>Condell, J.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pratheepan, Y.</au><au>Prasad, G.</au><au>Condell, J.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Style of action based individual recognition in video sequences</atitle><btitle>2008 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2008-10</date><risdate>2008</risdate><spage>1237</spage><epage>1242</epage><pages>1237-1242</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>142442383X</isbn><isbn>9781424423835</isbn><eisbn>1424423848</eisbn><eisbn>9781424423842</eisbn><abstract>We present a method for recognizing individuals from their ldquostyle of actionrdquo. Two forms of human recognition can be useful: the determination that an object is from the class of humans (which is called human detection), and the determination that an object is a particular individual from this class (this is called individual recognition). This paper focuses on the latter problem. A periodicity is detected in from a sequence of motion detected binary image frames by finding the maximum similarity measure between them. Based on the periodicity information the Motion History Image (MHI) is applied for each individual sequence to find out entire motion information of periodic action. The individual is then recognized using a partial Hausdorff Distance similarity measure and the SVM classification approach.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2008.4811452</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2008 IEEE International Conference on Systems, Man and Cybernetics, 2008, p.1237-1242
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_4811452
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fingers
Humans
Intelligent robots
Intelligent systems
Iris
Motion detection
Security
Support vector machine classification
Support vector machines
Video sequences
title Style of action based individual recognition in video sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Style%20of%20action%20based%20individual%20recognition%20in%20video%20sequences&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Pratheepan,%20Y.&rft.date=2008-10&rft.spage=1237&rft.epage=1242&rft.pages=1237-1242&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=142442383X&rft.isbn_list=9781424423835&rft_id=info:doi/10.1109/ICSMC.2008.4811452&rft_dat=%3Cieee_6IE%3E4811452%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424423848&rft.eisbn_list=9781424423842&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4811452&rfr_iscdi=true