EFS: Expert Finding System based on Wikipedia link pattern analysis

Building an expert finding system is very important for many applications especially in the academic environment. Previous work uses e-mails or Web pages as corpus to analyze the expertise for each expert. In this paper, we present an Expert Finding System, abbreviated as EFS to build experts'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kai-Hsiang Yang, Chun-Yu Chen, Hahn-Ming Lee, Jan-Ming Ho
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 635
container_issue
container_start_page 631
container_title
container_volume
creator Kai-Hsiang Yang
Chun-Yu Chen
Hahn-Ming Lee
Jan-Ming Ho
description Building an expert finding system is very important for many applications especially in the academic environment. Previous work uses e-mails or Web pages as corpus to analyze the expertise for each expert. In this paper, we present an Expert Finding System, abbreviated as EFS to build experts' profiles by using their journal publications. For a given proposal, the EFS first looks up the Wikipedia Web site to get relative link information, and then list and rank all associated experts by using those information. In our experiments, we use a real-world dataset which comprises of 882 people and 13,654 papers, and are categorized into 9 expertise domains. Our experimental results show that the EFS works well on several expertise domains like ldquoArtificial Intelligencerdquo and ldquoImage & Pattern Recognitionrdquo etc.
doi_str_mv 10.1109/ICSMC.2008.4811348
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4811348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4811348</ieee_id><sourcerecordid>4811348</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-c43eafae70f828f2e56ac94be2971b11665eb16afc13c43c537c1a8e3728f30b3</originalsourceid><addsrcrecordid>eNpFkM1OhDAURuvPJMLoC-imLwD2tqUt7gxhdJIxLtA4u0mBi6nDIKEshrcX4ySuvsU5OYuPkFtgMQBL79dZ8ZLFnDETSwMgpDkjIUguJRdGmnMS8ETrCFSSXPwDsb0kATDFo5Tz7YKEv4GUibl4RULvvxjjTIIJSJavigeaH3scRrpyXe26T1pMfsQDLa3Hmn539MPtXY-1s7R13Z72dhxx6KjtbDt556_JorGtx5vTLsn7Kn_LnqPN69M6e9xEjkM6RpUUaBuLmjWGm4ZjomyVyhJ5qqEEUCrBEpRtKhCzWyVCV2ANCj3bgpViSe7-ug4Rd_3gDnaYdqdbxA89G1Aa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EFS: Expert Finding System based on Wikipedia link pattern analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kai-Hsiang Yang ; Chun-Yu Chen ; Hahn-Ming Lee ; Jan-Ming Ho</creator><creatorcontrib>Kai-Hsiang Yang ; Chun-Yu Chen ; Hahn-Ming Lee ; Jan-Ming Ho</creatorcontrib><description>Building an expert finding system is very important for many applications especially in the academic environment. Previous work uses e-mails or Web pages as corpus to analyze the expertise for each expert. In this paper, we present an Expert Finding System, abbreviated as EFS to build experts' profiles by using their journal publications. For a given proposal, the EFS first looks up the Wikipedia Web site to get relative link information, and then list and rank all associated experts by using those information. In our experiments, we use a real-world dataset which comprises of 882 people and 13,654 papers, and are categorized into 9 expertise domains. Our experimental results show that the EFS works well on several expertise domains like ldquoArtificial Intelligencerdquo and ldquoImage &amp; Pattern Recognitionrdquo etc.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 142442383X</identifier><identifier>ISBN: 9781424423835</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1424423848</identifier><identifier>EISBN: 9781424423842</identifier><identifier>DOI: 10.1109/ICSMC.2008.4811348</identifier><identifier>LCCN: 2008903109</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Automatic Term Recognition ; Computer science ; Electronic mail ; Expert Finding ; Information science ; Ontologies ; Pattern analysis ; Proposals ; Social network services ; Wikipedia</subject><ispartof>2008 IEEE International Conference on Systems, Man and Cybernetics, 2008, p.631-635</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4811348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4811348$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kai-Hsiang Yang</creatorcontrib><creatorcontrib>Chun-Yu Chen</creatorcontrib><creatorcontrib>Hahn-Ming Lee</creatorcontrib><creatorcontrib>Jan-Ming Ho</creatorcontrib><title>EFS: Expert Finding System based on Wikipedia link pattern analysis</title><title>2008 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>Building an expert finding system is very important for many applications especially in the academic environment. Previous work uses e-mails or Web pages as corpus to analyze the expertise for each expert. In this paper, we present an Expert Finding System, abbreviated as EFS to build experts' profiles by using their journal publications. For a given proposal, the EFS first looks up the Wikipedia Web site to get relative link information, and then list and rank all associated experts by using those information. In our experiments, we use a real-world dataset which comprises of 882 people and 13,654 papers, and are categorized into 9 expertise domains. Our experimental results show that the EFS works well on several expertise domains like ldquoArtificial Intelligencerdquo and ldquoImage &amp; Pattern Recognitionrdquo etc.</description><subject>Application software</subject><subject>Automatic Term Recognition</subject><subject>Computer science</subject><subject>Electronic mail</subject><subject>Expert Finding</subject><subject>Information science</subject><subject>Ontologies</subject><subject>Pattern analysis</subject><subject>Proposals</subject><subject>Social network services</subject><subject>Wikipedia</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>142442383X</isbn><isbn>9781424423835</isbn><isbn>1424423848</isbn><isbn>9781424423842</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1OhDAURuvPJMLoC-imLwD2tqUt7gxhdJIxLtA4u0mBi6nDIKEshrcX4ySuvsU5OYuPkFtgMQBL79dZ8ZLFnDETSwMgpDkjIUguJRdGmnMS8ETrCFSSXPwDsb0kATDFo5Tz7YKEv4GUibl4RULvvxjjTIIJSJavigeaH3scRrpyXe26T1pMfsQDLa3Hmn539MPtXY-1s7R13Z72dhxx6KjtbDt556_JorGtx5vTLsn7Kn_LnqPN69M6e9xEjkM6RpUUaBuLmjWGm4ZjomyVyhJ5qqEEUCrBEpRtKhCzWyVCV2ANCj3bgpViSe7-ug4Rd_3gDnaYdqdbxA89G1Aa</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Kai-Hsiang Yang</creator><creator>Chun-Yu Chen</creator><creator>Hahn-Ming Lee</creator><creator>Jan-Ming Ho</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20080101</creationdate><title>EFS: Expert Finding System based on Wikipedia link pattern analysis</title><author>Kai-Hsiang Yang ; Chun-Yu Chen ; Hahn-Ming Lee ; Jan-Ming Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-c43eafae70f828f2e56ac94be2971b11665eb16afc13c43c537c1a8e3728f30b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Automatic Term Recognition</topic><topic>Computer science</topic><topic>Electronic mail</topic><topic>Expert Finding</topic><topic>Information science</topic><topic>Ontologies</topic><topic>Pattern analysis</topic><topic>Proposals</topic><topic>Social network services</topic><topic>Wikipedia</topic><toplevel>online_resources</toplevel><creatorcontrib>Kai-Hsiang Yang</creatorcontrib><creatorcontrib>Chun-Yu Chen</creatorcontrib><creatorcontrib>Hahn-Ming Lee</creatorcontrib><creatorcontrib>Jan-Ming Ho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kai-Hsiang Yang</au><au>Chun-Yu Chen</au><au>Hahn-Ming Lee</au><au>Jan-Ming Ho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EFS: Expert Finding System based on Wikipedia link pattern analysis</atitle><btitle>2008 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2008-01-01</date><risdate>2008</risdate><spage>631</spage><epage>635</epage><pages>631-635</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>142442383X</isbn><isbn>9781424423835</isbn><eisbn>1424423848</eisbn><eisbn>9781424423842</eisbn><abstract>Building an expert finding system is very important for many applications especially in the academic environment. Previous work uses e-mails or Web pages as corpus to analyze the expertise for each expert. In this paper, we present an Expert Finding System, abbreviated as EFS to build experts' profiles by using their journal publications. For a given proposal, the EFS first looks up the Wikipedia Web site to get relative link information, and then list and rank all associated experts by using those information. In our experiments, we use a real-world dataset which comprises of 882 people and 13,654 papers, and are categorized into 9 expertise domains. Our experimental results show that the EFS works well on several expertise domains like ldquoArtificial Intelligencerdquo and ldquoImage &amp; Pattern Recognitionrdquo etc.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2008.4811348</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2008 IEEE International Conference on Systems, Man and Cybernetics, 2008, p.631-635
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_4811348
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Automatic Term Recognition
Computer science
Electronic mail
Expert Finding
Information science
Ontologies
Pattern analysis
Proposals
Social network services
Wikipedia
title EFS: Expert Finding System based on Wikipedia link pattern analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EFS:%20Expert%20Finding%20System%20based%20on%20Wikipedia%20link%20pattern%20analysis&rft.btitle=2008%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Kai-Hsiang%20Yang&rft.date=2008-01-01&rft.spage=631&rft.epage=635&rft.pages=631-635&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=142442383X&rft.isbn_list=9781424423835&rft_id=info:doi/10.1109/ICSMC.2008.4811348&rft_dat=%3Cieee_6IE%3E4811348%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424423848&rft.eisbn_list=9781424423842&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4811348&rfr_iscdi=true