Evaluation of Groundwater Quality Using Artificial Neural Network
Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a diffe...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | |
container_start_page | 158 |
container_title | |
container_volume | |
creator | Changjun Zhu Hehai Xie Xiakun Huang |
description | Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a different approach. It is integrated into a software package using VB program. The software has a friend interactive interface, and someone not knowing artificial neural network can easily operate it. The development of software verifies that visual language VB is suitable to developing engineering software. |
doi_str_mv | 10.1109/KAMW.2008.4810449 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4810449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4810449</ieee_id><sourcerecordid>4810449</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7273504d7843555226fdf9dafaaabda7cf47e7e20a76dd775a4d1c8333ae1fdc3</originalsourceid><addsrcrecordid>eNo1UF9LwzAcjMhAN_sBxJd8gdb8-aVpHsuYU5yK4PBx_GwSidZW0tSxb-_UeS_Hwd1xHCHnnBWcM3N5W989F4KxqoCKMwBzRDKjKw4CQCrJzTGZ_gumJ2T64zV8n4UTkg3DG9sDlBRQnpJ68YXtiCn0He09XcZ-7OwWk4v0ccQ2pB1dD6F7pXVMwYcmYEvv3Rh_KW37-H5GJh7bwWUHnpH11eJpfp2vHpY383qVB65VyrXQUjGwutrvUkqI0ltvLHpEfLGoGw_aaScY6tJarRWC5U0lpUTHvW3kjFz89Qbn3OYzhg-Mu83hAvkNlr9Npg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of Groundwater Quality Using Artificial Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changjun Zhu ; Hehai Xie ; Xiakun Huang</creator><creatorcontrib>Changjun Zhu ; Hehai Xie ; Xiakun Huang</creatorcontrib><description>Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a different approach. It is integrated into a software package using VB program. The software has a friend interactive interface, and someone not knowing artificial neural network can easily operate it. The development of software verifies that visual language VB is suitable to developing engineering software.</description><identifier>ISBN: 1424435307</identifier><identifier>ISBN: 9781424435302</identifier><identifier>EISBN: 9781424435319</identifier><identifier>EISBN: 1424435315</identifier><identifier>DOI: 10.1109/KAMW.2008.4810449</identifier><identifier>LCCN: 2008911104</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Artificial neural networks ; Brain modeling ; Educational institutions ; evaluation ; groundwater quality ; Hydrology ; neural network ; Software packages ; Transfer functions ; Vectors ; Water pollution ; Water resources</subject><ispartof>2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop, 2008, p.158-160</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4810449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4810449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changjun Zhu</creatorcontrib><creatorcontrib>Hehai Xie</creatorcontrib><creatorcontrib>Xiakun Huang</creatorcontrib><title>Evaluation of Groundwater Quality Using Artificial Neural Network</title><title>2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop</title><addtitle>KAMW</addtitle><description>Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a different approach. It is integrated into a software package using VB program. The software has a friend interactive interface, and someone not knowing artificial neural network can easily operate it. The development of software verifies that visual language VB is suitable to developing engineering software.</description><subject>Application software</subject><subject>Artificial neural networks</subject><subject>Brain modeling</subject><subject>Educational institutions</subject><subject>evaluation</subject><subject>groundwater quality</subject><subject>Hydrology</subject><subject>neural network</subject><subject>Software packages</subject><subject>Transfer functions</subject><subject>Vectors</subject><subject>Water pollution</subject><subject>Water resources</subject><isbn>1424435307</isbn><isbn>9781424435302</isbn><isbn>9781424435319</isbn><isbn>1424435315</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF9LwzAcjMhAN_sBxJd8gdb8-aVpHsuYU5yK4PBx_GwSidZW0tSxb-_UeS_Hwd1xHCHnnBWcM3N5W989F4KxqoCKMwBzRDKjKw4CQCrJzTGZ_gumJ2T64zV8n4UTkg3DG9sDlBRQnpJ68YXtiCn0He09XcZ-7OwWk4v0ccQ2pB1dD6F7pXVMwYcmYEvv3Rh_KW37-H5GJh7bwWUHnpH11eJpfp2vHpY383qVB65VyrXQUjGwutrvUkqI0ltvLHpEfLGoGw_aaScY6tJarRWC5U0lpUTHvW3kjFz89Qbn3OYzhg-Mu83hAvkNlr9Npg</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Changjun Zhu</creator><creator>Hehai Xie</creator><creator>Xiakun Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Evaluation of Groundwater Quality Using Artificial Neural Network</title><author>Changjun Zhu ; Hehai Xie ; Xiakun Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7273504d7843555226fdf9dafaaabda7cf47e7e20a76dd775a4d1c8333ae1fdc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Artificial neural networks</topic><topic>Brain modeling</topic><topic>Educational institutions</topic><topic>evaluation</topic><topic>groundwater quality</topic><topic>Hydrology</topic><topic>neural network</topic><topic>Software packages</topic><topic>Transfer functions</topic><topic>Vectors</topic><topic>Water pollution</topic><topic>Water resources</topic><toplevel>online_resources</toplevel><creatorcontrib>Changjun Zhu</creatorcontrib><creatorcontrib>Hehai Xie</creatorcontrib><creatorcontrib>Xiakun Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changjun Zhu</au><au>Hehai Xie</au><au>Xiakun Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of Groundwater Quality Using Artificial Neural Network</atitle><btitle>2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop</btitle><stitle>KAMW</stitle><date>2008-12</date><risdate>2008</risdate><spage>158</spage><epage>160</epage><pages>158-160</pages><isbn>1424435307</isbn><isbn>9781424435302</isbn><eisbn>9781424435319</eisbn><eisbn>1424435315</eisbn><abstract>Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a different approach. It is integrated into a software package using VB program. The software has a friend interactive interface, and someone not knowing artificial neural network can easily operate it. The development of software verifies that visual language VB is suitable to developing engineering software.</abstract><pub>IEEE</pub><doi>10.1109/KAMW.2008.4810449</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424435307 |
ispartof | 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop, 2008, p.158-160 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4810449 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Artificial neural networks Brain modeling Educational institutions evaluation groundwater quality Hydrology neural network Software packages Transfer functions Vectors Water pollution Water resources |
title | Evaluation of Groundwater Quality Using Artificial Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20Groundwater%20Quality%20Using%20Artificial%20Neural%20Network&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Knowledge%20Acquisition%20and%20Modeling%20Workshop&rft.au=Changjun%20Zhu&rft.date=2008-12&rft.spage=158&rft.epage=160&rft.pages=158-160&rft.isbn=1424435307&rft.isbn_list=9781424435302&rft_id=info:doi/10.1109/KAMW.2008.4810449&rft_dat=%3Cieee_6IE%3E4810449%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424435319&rft.eisbn_list=1424435315&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4810449&rfr_iscdi=true |