Evaluation of Groundwater Quality Using Artificial Neural Network

Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Changjun Zhu, Hehai Xie, Xiakun Huang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue
container_start_page 158
container_title
container_volume
creator Changjun Zhu
Hehai Xie
Xiakun Huang
description Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a different approach. It is integrated into a software package using VB program. The software has a friend interactive interface, and someone not knowing artificial neural network can easily operate it. The development of software verifies that visual language VB is suitable to developing engineering software.
doi_str_mv 10.1109/KAMW.2008.4810449
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4810449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4810449</ieee_id><sourcerecordid>4810449</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7273504d7843555226fdf9dafaaabda7cf47e7e20a76dd775a4d1c8333ae1fdc3</originalsourceid><addsrcrecordid>eNo1UF9LwzAcjMhAN_sBxJd8gdb8-aVpHsuYU5yK4PBx_GwSidZW0tSxb-_UeS_Hwd1xHCHnnBWcM3N5W989F4KxqoCKMwBzRDKjKw4CQCrJzTGZ_gumJ2T64zV8n4UTkg3DG9sDlBRQnpJ68YXtiCn0He09XcZ-7OwWk4v0ccQ2pB1dD6F7pXVMwYcmYEvv3Rh_KW37-H5GJh7bwWUHnpH11eJpfp2vHpY383qVB65VyrXQUjGwutrvUkqI0ltvLHpEfLGoGw_aaScY6tJarRWC5U0lpUTHvW3kjFz89Qbn3OYzhg-Mu83hAvkNlr9Npg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluation of Groundwater Quality Using Artificial Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changjun Zhu ; Hehai Xie ; Xiakun Huang</creator><creatorcontrib>Changjun Zhu ; Hehai Xie ; Xiakun Huang</creatorcontrib><description>Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a different approach. It is integrated into a software package using VB program. The software has a friend interactive interface, and someone not knowing artificial neural network can easily operate it. The development of software verifies that visual language VB is suitable to developing engineering software.</description><identifier>ISBN: 1424435307</identifier><identifier>ISBN: 9781424435302</identifier><identifier>EISBN: 9781424435319</identifier><identifier>EISBN: 1424435315</identifier><identifier>DOI: 10.1109/KAMW.2008.4810449</identifier><identifier>LCCN: 2008911104</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Artificial neural networks ; Brain modeling ; Educational institutions ; evaluation ; groundwater quality ; Hydrology ; neural network ; Software packages ; Transfer functions ; Vectors ; Water pollution ; Water resources</subject><ispartof>2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop, 2008, p.158-160</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4810449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4810449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changjun Zhu</creatorcontrib><creatorcontrib>Hehai Xie</creatorcontrib><creatorcontrib>Xiakun Huang</creatorcontrib><title>Evaluation of Groundwater Quality Using Artificial Neural Network</title><title>2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop</title><addtitle>KAMW</addtitle><description>Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a different approach. It is integrated into a software package using VB program. The software has a friend interactive interface, and someone not knowing artificial neural network can easily operate it. The development of software verifies that visual language VB is suitable to developing engineering software.</description><subject>Application software</subject><subject>Artificial neural networks</subject><subject>Brain modeling</subject><subject>Educational institutions</subject><subject>evaluation</subject><subject>groundwater quality</subject><subject>Hydrology</subject><subject>neural network</subject><subject>Software packages</subject><subject>Transfer functions</subject><subject>Vectors</subject><subject>Water pollution</subject><subject>Water resources</subject><isbn>1424435307</isbn><isbn>9781424435302</isbn><isbn>9781424435319</isbn><isbn>1424435315</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF9LwzAcjMhAN_sBxJd8gdb8-aVpHsuYU5yK4PBx_GwSidZW0tSxb-_UeS_Hwd1xHCHnnBWcM3N5W989F4KxqoCKMwBzRDKjKw4CQCrJzTGZ_gumJ2T64zV8n4UTkg3DG9sDlBRQnpJ68YXtiCn0He09XcZ-7OwWk4v0ccQ2pB1dD6F7pXVMwYcmYEvv3Rh_KW37-H5GJh7bwWUHnpH11eJpfp2vHpY383qVB65VyrXQUjGwutrvUkqI0ltvLHpEfLGoGw_aaScY6tJarRWC5U0lpUTHvW3kjFz89Qbn3OYzhg-Mu83hAvkNlr9Npg</recordid><startdate>200812</startdate><enddate>200812</enddate><creator>Changjun Zhu</creator><creator>Hehai Xie</creator><creator>Xiakun Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200812</creationdate><title>Evaluation of Groundwater Quality Using Artificial Neural Network</title><author>Changjun Zhu ; Hehai Xie ; Xiakun Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7273504d7843555226fdf9dafaaabda7cf47e7e20a76dd775a4d1c8333ae1fdc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Application software</topic><topic>Artificial neural networks</topic><topic>Brain modeling</topic><topic>Educational institutions</topic><topic>evaluation</topic><topic>groundwater quality</topic><topic>Hydrology</topic><topic>neural network</topic><topic>Software packages</topic><topic>Transfer functions</topic><topic>Vectors</topic><topic>Water pollution</topic><topic>Water resources</topic><toplevel>online_resources</toplevel><creatorcontrib>Changjun Zhu</creatorcontrib><creatorcontrib>Hehai Xie</creatorcontrib><creatorcontrib>Xiakun Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changjun Zhu</au><au>Hehai Xie</au><au>Xiakun Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of Groundwater Quality Using Artificial Neural Network</atitle><btitle>2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop</btitle><stitle>KAMW</stitle><date>2008-12</date><risdate>2008</risdate><spage>158</spage><epage>160</epage><pages>158-160</pages><isbn>1424435307</isbn><isbn>9781424435302</isbn><eisbn>9781424435319</eisbn><eisbn>1424435315</eisbn><abstract>Based on the artificial neural network theory, a new evaluating model of artificial neural network is developed and the application procedure is illuminated in detail. At last, the model is applied to evaluate groundwater quality in northern China and the results are compared with those from a different approach. It is integrated into a software package using VB program. The software has a friend interactive interface, and someone not knowing artificial neural network can easily operate it. The development of software verifies that visual language VB is suitable to developing engineering software.</abstract><pub>IEEE</pub><doi>10.1109/KAMW.2008.4810449</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424435307
ispartof 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop, 2008, p.158-160
issn
language eng
recordid cdi_ieee_primary_4810449
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Artificial neural networks
Brain modeling
Educational institutions
evaluation
groundwater quality
Hydrology
neural network
Software packages
Transfer functions
Vectors
Water pollution
Water resources
title Evaluation of Groundwater Quality Using Artificial Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20Groundwater%20Quality%20Using%20Artificial%20Neural%20Network&rft.btitle=2008%20IEEE%20International%20Symposium%20on%20Knowledge%20Acquisition%20and%20Modeling%20Workshop&rft.au=Changjun%20Zhu&rft.date=2008-12&rft.spage=158&rft.epage=160&rft.pages=158-160&rft.isbn=1424435307&rft.isbn_list=9781424435302&rft_id=info:doi/10.1109/KAMW.2008.4810449&rft_dat=%3Cieee_6IE%3E4810449%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424435319&rft.eisbn_list=1424435315&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4810449&rfr_iscdi=true