A Robust and Efficient Hybrid Algorithm for Global Optimization

The objective of realizing more effective solution during any complex system design can be achieved by the application of Multidisciplinary Design Optimization. The primary problem in developing an integrated framework, which is essential in the iterative procedure of optimization, is how to automat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Geethaikrishnan, C., Mujumdar, P.M., Sudhakar, K., Adimurthy, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue
container_start_page 486
container_title
container_volume
creator Geethaikrishnan, C.
Mujumdar, P.M.
Sudhakar, K.
Adimurthy, V.
description The objective of realizing more effective solution during any complex system design can be achieved by the application of Multidisciplinary Design Optimization. The primary problem in developing an integrated framework, which is essential in the iterative procedure of optimization, is how to automate the design codes that were designed to be used by experts. Automation of design codes primarily calls for a robust optimization algorithm which can reach global optimum without calling for much expertise - with reference to neither the design problem nor the optimizing algorithm's parameters - from the user. Gradient search methods' efficiency in reaching global optimum relies on the expertise in providing right initial guess. Whereas in case of Genetic Algorithm(GA), it depends on the expertise in choosing GA parameters. This paper proposes a new hybrid approach, Genetic Algorithm Guided Gradient Search (GAGGS), which overcomes these limitations. This algorithm simultaneously exploits the gradients method's capability to quickly converge to the local optimum and GA's capability to explore the entire design space. To demonstrate its robustness and efficiency, it is applied to Keane's bumpy function with two and ten design variables.
doi_str_mv 10.1109/IADCC.2009.4809059
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4809059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4809059</ieee_id><sourcerecordid>4809059</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9bbd0e77a2f3fc4e46557cc73e26edfd497318bb74d91140e1259483b90c26fb3</originalsourceid><addsrcrecordid>eNo1kMtKAzEYhSNS0NZ5Ad3kBabm8meSfyXDWNtCoSC6LpNJopG5lJm4qE9vwXo2hw8O3-IQcs_ZknOGj9vyuaqWgjFcgmHIFF6ROQcBIFAYdU0y1OafNZ-R-XlrkBklzA3JpumLnQNKcjC35Kmkr4P9nhKte0dXIcQm-j7RzcmO0dGy_RjGmD47GoaRrtvB1i3dH1Ps4k-d4tDfkVmo28lnl16Q95fVW7XJd_v1tip3eeRapRytdcxrXYsgQwMeCqV002jpReFdcIBacmOtBoecA_NcKAQjLbJGFMHKBXn480bv_eE4xq4eT4fLAfIXmYFLyg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Robust and Efficient Hybrid Algorithm for Global Optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Geethaikrishnan, C. ; Mujumdar, P.M. ; Sudhakar, K. ; Adimurthy, V.</creator><creatorcontrib>Geethaikrishnan, C. ; Mujumdar, P.M. ; Sudhakar, K. ; Adimurthy, V.</creatorcontrib><description>The objective of realizing more effective solution during any complex system design can be achieved by the application of Multidisciplinary Design Optimization. The primary problem in developing an integrated framework, which is essential in the iterative procedure of optimization, is how to automate the design codes that were designed to be used by experts. Automation of design codes primarily calls for a robust optimization algorithm which can reach global optimum without calling for much expertise - with reference to neither the design problem nor the optimizing algorithm's parameters - from the user. Gradient search methods' efficiency in reaching global optimum relies on the expertise in providing right initial guess. Whereas in case of Genetic Algorithm(GA), it depends on the expertise in choosing GA parameters. This paper proposes a new hybrid approach, Genetic Algorithm Guided Gradient Search (GAGGS), which overcomes these limitations. This algorithm simultaneously exploits the gradients method's capability to quickly converge to the local optimum and GA's capability to explore the entire design space. To demonstrate its robustness and efficiency, it is applied to Keane's bumpy function with two and ten design variables.</description><identifier>ISBN: 9781424429271</identifier><identifier>ISBN: 1424429277</identifier><identifier>EISBN: 1424429285</identifier><identifier>EISBN: 9781424429288</identifier><identifier>DOI: 10.1109/IADCC.2009.4809059</identifier><identifier>LCCN: 2008908528</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace engineering ; Algorithm design and analysis ; Automation ; Conference management ; Design optimization ; Engineering management ; Genetic algorithms ; Gradient methods ; Project management ; Robustness</subject><ispartof>2009 IEEE International Advance Computing Conference, 2009, p.486-491</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4809059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4809059$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Geethaikrishnan, C.</creatorcontrib><creatorcontrib>Mujumdar, P.M.</creatorcontrib><creatorcontrib>Sudhakar, K.</creatorcontrib><creatorcontrib>Adimurthy, V.</creatorcontrib><title>A Robust and Efficient Hybrid Algorithm for Global Optimization</title><title>2009 IEEE International Advance Computing Conference</title><addtitle>IADCC</addtitle><description>The objective of realizing more effective solution during any complex system design can be achieved by the application of Multidisciplinary Design Optimization. The primary problem in developing an integrated framework, which is essential in the iterative procedure of optimization, is how to automate the design codes that were designed to be used by experts. Automation of design codes primarily calls for a robust optimization algorithm which can reach global optimum without calling for much expertise - with reference to neither the design problem nor the optimizing algorithm's parameters - from the user. Gradient search methods' efficiency in reaching global optimum relies on the expertise in providing right initial guess. Whereas in case of Genetic Algorithm(GA), it depends on the expertise in choosing GA parameters. This paper proposes a new hybrid approach, Genetic Algorithm Guided Gradient Search (GAGGS), which overcomes these limitations. This algorithm simultaneously exploits the gradients method's capability to quickly converge to the local optimum and GA's capability to explore the entire design space. To demonstrate its robustness and efficiency, it is applied to Keane's bumpy function with two and ten design variables.</description><subject>Aerospace engineering</subject><subject>Algorithm design and analysis</subject><subject>Automation</subject><subject>Conference management</subject><subject>Design optimization</subject><subject>Engineering management</subject><subject>Genetic algorithms</subject><subject>Gradient methods</subject><subject>Project management</subject><subject>Robustness</subject><isbn>9781424429271</isbn><isbn>1424429277</isbn><isbn>1424429285</isbn><isbn>9781424429288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKAzEYhSNS0NZ5Ad3kBabm8meSfyXDWNtCoSC6LpNJopG5lJm4qE9vwXo2hw8O3-IQcs_ZknOGj9vyuaqWgjFcgmHIFF6ROQcBIFAYdU0y1OafNZ-R-XlrkBklzA3JpumLnQNKcjC35Kmkr4P9nhKte0dXIcQm-j7RzcmO0dGy_RjGmD47GoaRrtvB1i3dH1Ps4k-d4tDfkVmo28lnl16Q95fVW7XJd_v1tip3eeRapRytdcxrXYsgQwMeCqV002jpReFdcIBacmOtBoecA_NcKAQjLbJGFMHKBXn480bv_eE4xq4eT4fLAfIXmYFLyg</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Geethaikrishnan, C.</creator><creator>Mujumdar, P.M.</creator><creator>Sudhakar, K.</creator><creator>Adimurthy, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200903</creationdate><title>A Robust and Efficient Hybrid Algorithm for Global Optimization</title><author>Geethaikrishnan, C. ; Mujumdar, P.M. ; Sudhakar, K. ; Adimurthy, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9bbd0e77a2f3fc4e46557cc73e26edfd497318bb74d91140e1259483b90c26fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerospace engineering</topic><topic>Algorithm design and analysis</topic><topic>Automation</topic><topic>Conference management</topic><topic>Design optimization</topic><topic>Engineering management</topic><topic>Genetic algorithms</topic><topic>Gradient methods</topic><topic>Project management</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Geethaikrishnan, C.</creatorcontrib><creatorcontrib>Mujumdar, P.M.</creatorcontrib><creatorcontrib>Sudhakar, K.</creatorcontrib><creatorcontrib>Adimurthy, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geethaikrishnan, C.</au><au>Mujumdar, P.M.</au><au>Sudhakar, K.</au><au>Adimurthy, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Robust and Efficient Hybrid Algorithm for Global Optimization</atitle><btitle>2009 IEEE International Advance Computing Conference</btitle><stitle>IADCC</stitle><date>2009-03</date><risdate>2009</risdate><spage>486</spage><epage>491</epage><pages>486-491</pages><isbn>9781424429271</isbn><isbn>1424429277</isbn><eisbn>1424429285</eisbn><eisbn>9781424429288</eisbn><abstract>The objective of realizing more effective solution during any complex system design can be achieved by the application of Multidisciplinary Design Optimization. The primary problem in developing an integrated framework, which is essential in the iterative procedure of optimization, is how to automate the design codes that were designed to be used by experts. Automation of design codes primarily calls for a robust optimization algorithm which can reach global optimum without calling for much expertise - with reference to neither the design problem nor the optimizing algorithm's parameters - from the user. Gradient search methods' efficiency in reaching global optimum relies on the expertise in providing right initial guess. Whereas in case of Genetic Algorithm(GA), it depends on the expertise in choosing GA parameters. This paper proposes a new hybrid approach, Genetic Algorithm Guided Gradient Search (GAGGS), which overcomes these limitations. This algorithm simultaneously exploits the gradients method's capability to quickly converge to the local optimum and GA's capability to explore the entire design space. To demonstrate its robustness and efficiency, it is applied to Keane's bumpy function with two and ten design variables.</abstract><pub>IEEE</pub><doi>10.1109/IADCC.2009.4809059</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424429271
ispartof 2009 IEEE International Advance Computing Conference, 2009, p.486-491
issn
language eng
recordid cdi_ieee_primary_4809059
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerospace engineering
Algorithm design and analysis
Automation
Conference management
Design optimization
Engineering management
Genetic algorithms
Gradient methods
Project management
Robustness
title A Robust and Efficient Hybrid Algorithm for Global Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Robust%20and%20Efficient%20Hybrid%20Algorithm%20for%20Global%20Optimization&rft.btitle=2009%20IEEE%20International%20Advance%20Computing%20Conference&rft.au=Geethaikrishnan,%20C.&rft.date=2009-03&rft.spage=486&rft.epage=491&rft.pages=486-491&rft.isbn=9781424429271&rft.isbn_list=1424429277&rft_id=info:doi/10.1109/IADCC.2009.4809059&rft_dat=%3Cieee_6IE%3E4809059%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424429285&rft.eisbn_list=9781424429288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4809059&rfr_iscdi=true