Gabor-type matrices and discrete huge Gabor transforms

A Gabor family is obtained from a Gabor atom (or Gabor window, or basic building block) by time-frequency shifts along some discrete TF-lattice. Such a family is usually not orthogonal. Therefore the determination of appropriate coefficients in order to obtain a series representation of a given sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sigang Qiu, Feichtinger, H.G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1092 vol.2
container_issue
container_start_page 1089
container_title
container_volume 2
creator Sigang Qiu
Feichtinger, H.G.
description A Gabor family is obtained from a Gabor atom (or Gabor window, or basic building block) by time-frequency shifts along some discrete TF-lattice. Such a family is usually not orthogonal. Therefore the determination of appropriate coefficients in order to obtain a series representation of a given signal in terms of this family has been considered a computational intensive task for a long time. We introduce a class of matrices, called Gabor-type matrices and show that the product of two Gabor-type matrices is again a Gabor-type matrix of the same type. The key point for applications is based on the observation that the multiplication of Gabor-type matrices can be replaced by some special "multiplication" of associated small block matrices. We propose an efficient algorithm, which we call the block-multiplication, and which makes explicit use of the sparsity of those Gabor-type matrices. As an interesting consequence, we show that Gabor operators corresponding to Gabor triples (g/sub k/,a,b) commute for arbitrary signals g/sub k/ (k=1,2) provided that ab divides the signal length.
doi_str_mv 10.1109/ICASSP.1995.480424
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_480424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>480424</ieee_id><sourcerecordid>480424</sourcerecordid><originalsourceid>FETCH-ieee_primary_4804243</originalsourceid><addsrcrecordid>eNp9jrkOgkAUAF88EkH9Aar9AfAtLMeWhnh1JljYkRUeipEju1j49yZqbTXFTDEADkePc5SrQ7rOsqPHpQw9kaDwxQgsP4ilyyWex2BjnGDgi4CHE7B46KMbcSFnYBtzR8QkFokF0U5dOu0Or55YowZdF2SYaktW1qbQNBC7Pa_EPhUbtGpN1enGLGBaqYeh5Y9zcLabU7p3ayLKe103Sr_y71bwV74BzxM4Ug</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gabor-type matrices and discrete huge Gabor transforms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sigang Qiu ; Feichtinger, H.G.</creator><creatorcontrib>Sigang Qiu ; Feichtinger, H.G.</creatorcontrib><description>A Gabor family is obtained from a Gabor atom (or Gabor window, or basic building block) by time-frequency shifts along some discrete TF-lattice. Such a family is usually not orthogonal. Therefore the determination of appropriate coefficients in order to obtain a series representation of a given signal in terms of this family has been considered a computational intensive task for a long time. We introduce a class of matrices, called Gabor-type matrices and show that the product of two Gabor-type matrices is again a Gabor-type matrix of the same type. The key point for applications is based on the observation that the multiplication of Gabor-type matrices can be replaced by some special "multiplication" of associated small block matrices. We propose an efficient algorithm, which we call the block-multiplication, and which makes explicit use of the sparsity of those Gabor-type matrices. As an interesting consequence, we show that Gabor operators corresponding to Gabor triples (g/sub k/,a,b) commute for arbitrary signals g/sub k/ (k=1,2) provided that ab divides the signal length.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 0780324315</identifier><identifier>ISBN: 9780780324312</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1995.480424</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete transforms ; Lattices ; Mathematics ; Matrices ; Sampling methods ; Time frequency analysis ; Windows</subject><ispartof>1995 International Conference on Acoustics, Speech, and Signal Processing, 1995, Vol.2, p.1089-1092 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/480424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/480424$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sigang Qiu</creatorcontrib><creatorcontrib>Feichtinger, H.G.</creatorcontrib><title>Gabor-type matrices and discrete huge Gabor transforms</title><title>1995 International Conference on Acoustics, Speech, and Signal Processing</title><addtitle>ICASSP</addtitle><description>A Gabor family is obtained from a Gabor atom (or Gabor window, or basic building block) by time-frequency shifts along some discrete TF-lattice. Such a family is usually not orthogonal. Therefore the determination of appropriate coefficients in order to obtain a series representation of a given signal in terms of this family has been considered a computational intensive task for a long time. We introduce a class of matrices, called Gabor-type matrices and show that the product of two Gabor-type matrices is again a Gabor-type matrix of the same type. The key point for applications is based on the observation that the multiplication of Gabor-type matrices can be replaced by some special "multiplication" of associated small block matrices. We propose an efficient algorithm, which we call the block-multiplication, and which makes explicit use of the sparsity of those Gabor-type matrices. As an interesting consequence, we show that Gabor operators corresponding to Gabor triples (g/sub k/,a,b) commute for arbitrary signals g/sub k/ (k=1,2) provided that ab divides the signal length.</description><subject>Discrete transforms</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Sampling methods</subject><subject>Time frequency analysis</subject><subject>Windows</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>0780324315</isbn><isbn>9780780324312</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1995</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrkOgkAUAF88EkH9Aar9AfAtLMeWhnh1JljYkRUeipEju1j49yZqbTXFTDEADkePc5SrQ7rOsqPHpQw9kaDwxQgsP4ilyyWex2BjnGDgi4CHE7B46KMbcSFnYBtzR8QkFokF0U5dOu0Or55YowZdF2SYaktW1qbQNBC7Pa_EPhUbtGpN1enGLGBaqYeh5Y9zcLabU7p3ayLKe103Sr_y71bwV74BzxM4Ug</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Sigang Qiu</creator><creator>Feichtinger, H.G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1995</creationdate><title>Gabor-type matrices and discrete huge Gabor transforms</title><author>Sigang Qiu ; Feichtinger, H.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_4804243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Discrete transforms</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Sampling methods</topic><topic>Time frequency analysis</topic><topic>Windows</topic><toplevel>online_resources</toplevel><creatorcontrib>Sigang Qiu</creatorcontrib><creatorcontrib>Feichtinger, H.G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sigang Qiu</au><au>Feichtinger, H.G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gabor-type matrices and discrete huge Gabor transforms</atitle><btitle>1995 International Conference on Acoustics, Speech, and Signal Processing</btitle><stitle>ICASSP</stitle><date>1995</date><risdate>1995</risdate><volume>2</volume><spage>1089</spage><epage>1092 vol.2</epage><pages>1089-1092 vol.2</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>0780324315</isbn><isbn>9780780324312</isbn><abstract>A Gabor family is obtained from a Gabor atom (or Gabor window, or basic building block) by time-frequency shifts along some discrete TF-lattice. Such a family is usually not orthogonal. Therefore the determination of appropriate coefficients in order to obtain a series representation of a given signal in terms of this family has been considered a computational intensive task for a long time. We introduce a class of matrices, called Gabor-type matrices and show that the product of two Gabor-type matrices is again a Gabor-type matrix of the same type. The key point for applications is based on the observation that the multiplication of Gabor-type matrices can be replaced by some special "multiplication" of associated small block matrices. We propose an efficient algorithm, which we call the block-multiplication, and which makes explicit use of the sparsity of those Gabor-type matrices. As an interesting consequence, we show that Gabor operators corresponding to Gabor triples (g/sub k/,a,b) commute for arbitrary signals g/sub k/ (k=1,2) provided that ab divides the signal length.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1995.480424</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 1995 International Conference on Acoustics, Speech, and Signal Processing, 1995, Vol.2, p.1089-1092 vol.2
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_480424
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Discrete transforms
Lattices
Mathematics
Matrices
Sampling methods
Time frequency analysis
Windows
title Gabor-type matrices and discrete huge Gabor transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gabor-type%20matrices%20and%20discrete%20huge%20Gabor%20transforms&rft.btitle=1995%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing&rft.au=Sigang%20Qiu&rft.date=1995&rft.volume=2&rft.spage=1089&rft.epage=1092%20vol.2&rft.pages=1089-1092%20vol.2&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=0780324315&rft.isbn_list=9780780324312&rft_id=info:doi/10.1109/ICASSP.1995.480424&rft_dat=%3Cieee_6IE%3E480424%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=480424&rfr_iscdi=true